Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Withaferin A and its potential role in glioblastoma (GBM)

Abstract

Within the Ayurvedic medical tradition of India, Ashwagandha (Withania somnifera) is a well-known herb. A large number of withanolides have been isolated from both its roots and its leaves and many have been assessed for their pharmacological activities. Amongst them, Withaferin A is one of its most bioactive phytoconstituents. Due to the lactonal steroid’s potential to modulate multiple oncogenic pathways, Withaferin A has gained much attention as a possible anti-neoplastic agent. This review focuses on the use of Withaferin A alone, or in combination with other treatments, as a newer option for therapy against the most aggressive variant of brain tumors, Glioblastoma. We survey the various studies that delineate Withaferin A’s anticancer mechanisms, its toxicity profiles, its pharmacokinetics and pharmacodynamics and its immuno-modulating properties.

This is a preview of subscription content, log in to check access.

Fig. 1

References

  1. 1.

    Patel K, Singh RB, Patel DK (2013) Pharmacological and analytical aspects of Withaferin A: a concise report of current scientific literature. Asian Pac J Reprod 2:238–243. doi:10.1016/S2305-0500(13)60154-2

  2. 2.

    Singh N, Bhalla M, De Jager P, Gilca M (2011) An overview on ashwagandha: a rasayana (rejuvenator) of ayurveda. Afr J Tradit Complement Altern Med. doi:10.4314/ajtcam.v8i5S.9

  3. 3.

    Alam N, Hossain M, Khalil MI et al (2011) Recent advances in elucidating the biological properties of Withania somnifera and its potential role in health benefits. Phytochem Rev 11:97–112. doi:10.1007/s11101-011-9221-5

  4. 4.

    Tiwari R, Chakraborty S, Saminathan M et al (2014) Ashwagandha (Withania somnifera): role in safeguarding health, immunomodulatory effects, combating infections and therapeutic application: a review. J Biol Sci 2:77–94

  5. 5.

    Khan S, Malik F, Suri KA, Singh J (2009) Molecular insight into the immune up-regulatory properties of the leaf extract of Ashwagandha and identification of Th1 immunostimulatory chemical entity. Vaccine 27:6080–6087. doi:10.1016/j.vaccine.2009.07.011

  6. 6.

    Kurup PA (1956) Antibiotic principle of the leaves of Withania somnifera. Curr Sci 25:57

  7. 7.

    Kurup PA (1958) The antibacterial principle of Withania somnifera. I. Isolation and antibacterial activity. Antibiot Chemother 8:511

  8. 8.

    Devi PU (2014) Withania somnifera Dunal (Ashwagandha):Potential plant source of a promising dug for cancer chemotherapy and radiosensitization. Indian J Exp Biol 34:927–932

  9. 9.

    Lavie D, Glotter E, Shvo Y (1965) Constituents of Withania somnifera Dun. Part IV. The structure of withaferin A. J Chem Soc Resumed 7517. doi:10.1039/jr9650007517

  10. 10.

    Shohat B, Gitter S, Abraham A, Lavie D (1967) Antitumor activity of Withaferin A (NSC-101088). Cancer Chemother Rep 51:1–6

  11. 11.

    Budhiraja RD, Krishan P, Sudhir S (2000) Biological activity of Withanolides. J Sci Ind Res 59:904–911

  12. 12.

    Fuska J, Prokska B, Williamson J (1987) Microbiological and chemical dehydrogenation of Withaferin A. Folia Microbiol (Praha) 32:112–115

  13. 13.

    Fuska J, Khadlova A, Sturdikova M et al (1985) Biotransformation of Withaferin-A by a culture of arthrobacter simplex. Folia Microbiol 30:427–432

  14. 14.

    Fuska J, Fuskova A, Rosazza P (1984) Novel cytotoxic and antitumor agents.IV. Withaferin A: relation of its structure to the in vitro cytotoxic effects on P388 cells. Neoplasma 31(1):31–36

  15. 15.

    Santagata S, Xu Y, Wijeratne EMK et al (2012) Using the heat-shock response to discover anticancer compounds that target protein homeostasis. ACS Chem Biol 7:340–349. doi:10.1021/cb200353m

  16. 16.

    Berghe WV, Sabbe L, Kaileh M et al (2012) Molecular insight in the multifunctional activities of Withaferin A. Biochem Pharmacol 84:1282–1291. doi:10.1016/j.bcp.2012.08.027

  17. 17.

    Satelli A, Li S (2011) Vimentin in cancer and its potential as a molecular target for cancer therapy. Cell Mol Life Sci 68:3033–3046

  18. 18.

    Bargagna-Mohan P, Hamza A, Kim Y et al (2007) The tumor inhibitor and antiangiogenic agent Withaferin A targets the intermediate filament protein vimentin. Chem Biol 14:623–634. doi:10.1016/j.chembiol.2007.04.010

  19. 19.

    Caplan JF, Filipenko NR, Fitzpatrick SL, Waisman DM (2004) Regulation of annexin A2 by reversible glutathionylation. J Biol Chem 279:7740–7750. doi:10.1074/jbc.M313049200

  20. 20.

    Yokota Y, Bargagna-Mohan P, Ravindranath PP et al (2006) Development of withaferin A analogs as probes of angiogenesis. Bioorg Med Chem Lett 16:2603–2607. doi:10.1016/j.bmcl.2006.02.039

  21. 21.

    Mohan R, Hammers H, Bargagna-Mohan P, Zhan X (2004) Withaferin A is a potent inhibitor or angiogenesis. Angiogenesis 115–22.

  22. 22.

    Yang H, Shi G, Dou QP (2006) The tumor proteasome is a primary target for the natural anticancer compound Withaferin A isolated from “Indian winter cherry”. Mol Pharmacol 71:426–437. doi:10.1124/mol.106.030015

  23. 23.

    Grover A, Shandilya A, Punetha A et al (2010) Inhibition of the NEMO/IKKβ association complex formation, a novel mechanism associated with the NF-κB activation suppression by Withania somnifera’s key metabolite Withaferin A. BMC Genomics 11:S25. doi:10.1186/1471-2164-11-S4-S25

  24. 24.

    Kaileh M, Berghe WV, Heyerick A (2007) Withaferin A strongly elicits IB kinase hyperphosphorylation concomitant with potent inhibition of its kinase activity. J Biol Chem 282:4253–4264. doi:10.1074/jbc.M606728200

  25. 25.

    Bernier M (2006) Binding of manumycin A inhibits IkappaB kinase beta activity. J Biol Chem 281:2551–2561. doi:10.1074/jbc.M511878200

  26. 26.

    Gupta S, Reuter S, Kannappan R, Yadav V (2010) Modification of cysteine 179 of IkappaBalpha kinase by nimbolide leads to down-regulation of NF-kappaB-regulated cell survival and proliferative proteins and sensitization of tumor cells to chemotherapeutic agents. J Biol Chem 285:35406–35417.  doi:10.1074/jbc.M110.161984

  27. 27.

    Kim BH, Lee J-Y, Seo JH et al (2007) Artemisolide is a typical inhibitor of IκB kinase β targeting cysteine-179 residue and down-regulates NF-κB-dependent TNF-α expression in LPS-activated macrophages. Biochem Biophys Res Commun 361:593–598. doi:10.1016/j.bbrc.2007.07.069

  28. 28.

    Liang M-C, Bardhan S, Pace EA et al (2006) Inhibition of transcription factor NF-κB signaling proteins IKKβ and p65 through specific cysteine residues by epoxyquinone A monomer: correlation with its anti-cancer cell growth activity. Biochem Pharmacol 71:634–645. doi:10.1016/j.bcp.2005.11.013

  29. 29.

    Palempalli UD, Gandhi U, Kalantari P et al (2009) Gambogic acid covalently modifies IκB kinase-β subunit to mediate suppression of lipopolysaccharide-induced activation of NF-κB in macrophages. Biochem J 419:401. doi:10.1042/BJ20081482

  30. 30.

    Sen N, Banerjee B, Das B, Ganguly A (2007) Apoptosis is induced in leishmanial cells by a novel protein kinase inhibitor withaferin A and is facilitated by apoptotic topoisomerase I-DNA complex. Cell Death Differ 14:358–367. doi:10.1038/sj.cdd.4402002

  31. 31.

    Grover A, Shandilya A, Agrawal V et al (2011) Blocking the chaperone kinome pathway: mechanistic insights into a novel dual inhibition approach for supra-additive suppression of malignant tumors. Biochem Biophys Res Commun 404:498–503. doi:10.1016/j.bbrc.2010.12.010

  32. 32.

    Grover A, Shandilya A, Agrawal V et al (2011) Hsp90/Cdc37 Chaperone/co-chaperone complex, a novel junction anticancer target elucidated by the mode of action of herbal drug Withaferin A. BMC Bioinformatics 12:S30. doi:10.1186/1471-2105-12-S1-S30

  33. 33.

    Yu Y, Hamza A, Zhang T et al (2010) Withaferin A targets heat shock protein 90 in pancreatic cancer cells. Biochem Pharmacol 79:542–551. doi:10.1016/j.bcp.2009.09.017

  34. 34.

    Mendillo ML, Santagata S, Koeva M, al et (2013) HSF1 drives a transcriptional program distinct from heat shock to support highly malignant human cancers. PubMed Cent 150:549–562.  doi:10.1016/j.cell.2012.06.031

  35. 35.

    Zou J, Guo Y, Guettouche T et al (1998) Repression of heat shock transcription factor HSF1 activation by HSP90 (HSP90 complex) that forms a stress-sensitive complex with HSF1. Cell 94:471–480

  36. 36.

    Mehrotra A, Kaul D, Joshi K (2010) LXR-α selectively reprogrammes cancer cells to enter into apoptosis. Mol Cell Biochem 349:41–55. doi:10.1007/s11010-010-0659-3

  37. 37.

    Min K, Choi K, Kwon TK (2011) Withaferin A down-regulates lipopolysaccharide-induced cyclooxygenase-2 expression and PGE2 production through the inhibition of STAT1/3 activation in microglial cells. Int Immunopharmacol 11:1137–1142. doi:10.1016/j.intimp.2011.02.029

  38. 38.

    Munagala R, Kausar H, Munjal C, Gupta RC (2011) Withaferin A induces p53-dependent apoptosis by repression of HPV oncogenes and upregulation of tumor suppressor proteins in human cervical cancer cells. Carcinogenesis 32:1697–1705. doi:10.1093/carcin/bgr192

  39. 39.

    Koduru S, Kumar R, Srinivasan S et al (2010) Notch-1 inhibition by Withaferin-A: a therapeutic target against colon carcinogenesis. Mol Cancer Ther 9:202–210. doi:10.1158/1535-7163.MCT-09-0771

  40. 40.

    Ndlovu MN, Van Lint C, Van Wesemael K et al (2009) Hyperactivated NF-kappaB and AP-1 transcription factors promote highly accessible chromatin and constitutive transcription across the interleukin-6 gene promoter in metastatic breast cancer cells. Mol Cell Biol 29:5488–5504. doi:10.1128/MCB.01657-08

  41. 41.

    Stan SD, Hahm ER, Warin R, Singh SV (2008) Withaferin A causes foxo3a- and bim-dependent apoptosis and inhibits growth of human breast cancer cells in vivo. Cancer Res 68:7661–7669. doi:10.1158/0008-5472.CAN-08-1510

  42. 42.

    Widodo N, Kaur K, Shrestha BG et al (2007) Selective killing of cancer cells by leaf extract of ashwagandha: identification of a tumor-inhibitory factor and the first molecular insights to its effect. Clin Cancer Res 13:2298–2306. doi:10.1158/1078-0432.CCR-06-0948

  43. 43.

    Kataria H, Shah N, Kaul SC et al (2011) Water extract of ashwagandha leaves limits proliferation and migration, and induces differentiation in glioma cells. Evid Based Complement Alternat Med 2011:1–12. doi:10.1093/ecam/nep188

  44. 44.

    Thaiparambil JT, Bender L, Ganesh T et al (2011) Withaferin A inhibits breast cancer invasion and metastasis at sub-cytotoxic doses by inducing vimentin disassembly and serine 56 phosphorylation. Int J Cancer 129:2744–2755. doi:10.1002/ijc.25938

  45. 45.

    Patil D, Gautam M, Mishra S et al (2013) Determination of withaferin A and withanolide A in mice plasma using high-performance liquid chromatography-tandem mass spectrometry: application to pharmacokinetics after oral administration of Withania somnifera aqueous extract. J Pharm Biomed Anal 80:203–212. doi:10.1016/j.jpba.2013.03.001

  46. 46.

    Gupta RC, Bansal SS, Aqil F et al (2012) Controlled-release systemic delivery—a new concept in cancer chemoprevention. Carcinogenesis 33(8):1608–1615. doi:10.1093/carcin/bgs209

  47. 47.

    Rosazza JP, Nicholas AW, Gustafson ME. (1978) Microbial transformations of natural antitumor agents. 7. 14-alpha-Hydroxylation of withaferin-A by Cunninghamella elegans (NRRL 1393). Steroids 31(5):671–679.  doi:10.1016/S0039-128X(78)80007-5

  48. 48.

    Gorgan PT (2014) Withaferin A: a novel therapeutic approach for malignant brain tumors. KU ScholarWorks 33(5):1462–1476

  49. 49.

    Panda S, Kar A (1998) Changes in thyroid hormone concentrations after administration of ashwagandha root extract to adult male mice. J PharmPharmacol 50:1065–1068

  50. 50.

    Kupchan (1965) Isolation of Withaferin A. J Am Chem Soc 87(24):5805–5806

  51. 51.

    McFarland BC, Hong SW, Rajbhandari R et al (2013) NF-κB-induced IL-6 ensures STAT3 activation and tumor aggressiveness in glioblastoma. PLoS One 8:e78728. doi:10.1371/journal.pone.0078728

  52. 52.

    Grogan PT, Sarkaria JN, Timmermann BN, Cohen MS (2014) Oxidative cytotoxic agent withaferin A resensitizes temozolomide-resistant glioblastomas via MGMT depletion and induces apoptosis through Akt/mTOR pathway inhibitory modulation. Invest New Drugs 32:604–617. doi:10.1007/s10637-014-0084-7

  53. 53.

    Shah N, Kataria H, Kaul SC et al (2009) Effect of the alcoholic extract of Ashwagandha leaves and its components on proliferation, migration, and differentiation of glioblastoma cells: Combinational approach for enhanced differentiation. Cancer Sci 100:1740–1747. doi:10.1111/j.1349-7006.2009.01236.x

  54. 54.

    Grogan PT, Sleder KD, Stecklein SR, Cohen MS (2011) Vassobia breviflora root-extract withaferin a as a novel cytotoxic and synergistic agent against malignant gliomas. J Surg Res 165:311. doi:10.1016/j.jss.2010.11.352

  55. 55.

    Grogan P, Samadi AK, Cohen MS (2010) A novel cytotoxic agent induces apoptosis in malignant gliomas in vitro. J Surg Res 158:341–342. doi:10.1016/j.jss.2009.11.468

  56. 56.

    Zhang B, Shah S, Prince J et al (2014) The antitumor effects of Withaferin A in glioblastoma stem cells. Neuro Oncol 16:v79–v95. doi:10.1093/neuonc/nou255

  57. 57.

    Chang E, Pohling C, Natarajan A et al (2016) AshwaMAX and Withaferin A inhibits gliomas in cellular and murine orthotopic models. J Neurooncol 126:253–264. doi:10.1007/s11060-015-1972-1

  58. 58.

    Grogan PT, Sleder KD, Samadi AK et al (2012) Cytotoxicity of withaferin A in glioblastomas involves induction of an oxidative stress-mediated heat shock response while altering Akt/mTOR and MAPK signaling pathways. Invest New Drugs 31:545–557. doi:10.1007/s10637-012-9888-5

  59. 59.

    Palyi I, Tyihak E, Palyi V (2015) Cytological effects of compounds isolated from Withania Somnifera Dun. Herba Hung 8:73–78

  60. 60.

    Batia S, Gitter S, Lavie D (1970) Effect of Withaferin on Ehrlich carcinoma-cytological observation. Int J Cancer 5(2):244–252

  61. 61.

    Shohat B, Joshua H (1971) Effect of Withaferin A on ehrilch ascites tumor cells II. target tumor cell destruction in vivo by immune activation. Int J Cancer 8:487–496. doi:10.1002/ijc.2910080317

  62. 62.

    Shohat B (1973) Effect of Withaferin A on cells in tissue culture. ZKrebsforsch 80:97–102

  63. 63.

    Yoshida M, Hoshi A, Kuretani K (1979) Relationship between chemical structure and antitumor activity of Withaferin A analogues. J Pharm Dyn 2:92–97

  64. 64.

    Begum VH, Sadique J (1987) Effect of Withania somnifera on glycosaminoglycan synthesis in carrageenin-induced AiR pouch granuloma. Biochem Med Metab Biol 38:272–277

  65. 65.

    Devi PU, Sharada AC, Solomon FE (1993) Antitumor and Radiosensitizing effect of Withania somnifera (Ashwagandha) on a transplantable mouse tumor, Sarcoma-180. Indian J Exp Biol 31:607–611

  66. 66.

    Devi PU, Sharada AC, Solomon FE (1995) In vivo growth inhibitory and radiosensitizing effects of Withaferin A on mouse Ehrlich ascites carcinoma. Cancer Lett 95:189–193

  67. 67.

    Sharada AC, Solomon FE (1996) Antitumor and radiosensitizing effect of Withania A on mouse ehrlich ascities carcinoma in vivo. Acta Oncol 35:95–100

  68. 68.

    Devi PU (1996) Withania somnifera Dunal (Ashwagandha): potential plant source of a promising drug for cancer chemotherapy and radiosensitization. Indian J Exp Biol 34(10):927–932

  69. 69.

    Devi PU, Akagi K, Ostapenko V, al et (2003) Withaferin A: a new radiosensitizer from the Indian medicinal plant Withania somnifera. Int J Radiat Biol 69:193–197

  70. 70.

    Devi PU, Kamath R (2003) Radiosensitizing effect of Withaferin A combined with hyperthermia on mouse fibrosarcoma and melanoma. J Radiat Res 44:1–6

  71. 71.

    Mandal C, Dutta A, Mallick A et al (2008) Withaferin A induces apoptosis by activating p38 mitogen-activated protein kinase signaling cascade in leukemic cells of lymphoid and myeloid origin through mitochondrial death cascade. Apoptosis 13:1450–1464. doi:10.1007/s10495-008-0271-0

  72. 72.

    Widodo N, Shah N, Priyandoko D et al (2009) Deceleration of senescence in normal human fibroblasts by withanone extracted from ashwagandha leaves. J Gerontol A Biol Sci Med Sci 64:1031–1038. doi:10.1093/gerona/glp088

  73. 73.

    Samadi A, Loo P, Mukerji R et al (2009) A novel HSP90 modulator with selective activity against thyroid cancers in vitro. Surgery 146:1196–1207. doi:10.1016/j.surg.2009.09.028

  74. 74.

    Devi PU, Sharada AC, Solomon FE, Kamath MS (1992) In vivo growth inhibitory effect of Withania Somnifera (Ashwagandha) on a transplantable mouse model, Sarcoma 180. Indian J Exp Biol 30:169–172

  75. 75.

    Shohat B, Kirson I, Lavie D (1978)  Immunosuppressive activity of two plant steroidal lactones withaferin A and withanolide.  Biomedicine 28(1):18–24

  76. 76.

    Rasool M, Varalakshmi P (2006) Immunomodulatory role of Withania somnifera root powder on experimental induced inflammation: an in vivo and in vitro study. Vascul Pharmacol 44:406–410. doi:10.1016/j.vph.2006.01.015

  77. 77.

    Davis L, Kuttan G (2000) Immunomodulatory activity of Withania. J Ethnopharmacol 71:193–200

  78. 78.

    Verma SK, Shaban A, Purohit R et al (2012) Immunomodulatory activity of Withania somnifera (L.). J Chem Pharm Res 4:559–561

  79. 79.

    Bani S, Gautam M, Sheikh FA et al (2006) Selective Th1 up-regulating activity of Withania somnifera aqueous extract in an experimental system using flow cytometry. J Ethnopharmacol 107:107–115. doi:10.1016/j.jep.2006.02.016

  80. 80.

    Malik F, Singh J, Khajuria A et al (2007) A standardized root extract of Withania somnifera and its major constituent withanolide A elicit humoral and cell-mediated immune responses by up regulation of Th1-dominant polarization in BALB/c mice. Life Sci 80:1525–1538. doi:10.1016/j.lfs.2007.01.029

  81. 81.

    Malik F, Kumar A, Bhushan S et al (2009) Immune modulation and apoptosis induction: two sides of antitumoural activity of a standardized herbal formulation of Withania somnifera. Eur J Cancer 45:1494–1509. doi:10.1016/j.ejca.2009.01.034

  82. 82.

    Sharada AC, Solomon FE, Devi PU (1993) Toxicity of Withania somnifera root extract in rats and mice. Int J Pharmacog 3:205–212

  83. 83.

    Raut A, Rege N, Shirolkar S et al (2012) Exploratory study to evaluate tolerability, safety, and activity of Ashwagandha (Withania somnifera) in healthy volunteers. J Ayurveda Integr Med 3:111. doi:10.4103/0975-9476.100168

  84. 84.

    Sehgal VN, Verma P, bhattacharya SN (2014) fixed drug eruption caused by ashwagandha (Wihania somnifera):a widely used ayurvedic drug. Case Study 10:48–49.

  85. 85.

    Toniolo M, Ceschi A et al (2011) Haemolytic anaemia and abdominal pain—a cause not to be missed. Br J Clin Pharmacol 1–2. doi:10.1111/j.1365-2125.2011.03909.x

Download references

Funding

We thank the Ben and Catherine Ivy Foundation for their critical support.

Author information

Correspondence to Sanjiv S. Gambhir.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Jasdeep Dhami and Edwin Chang have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 617 KB)

Supplementary material 2 (DOCX 363 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dhami, J., Chang, E. & Gambhir, S.S. Withaferin A and its potential role in glioblastoma (GBM). J Neurooncol 131, 201–211 (2017). https://doi.org/10.1007/s11060-016-2303-x

Download citation

Keywords

  • Ashwagandha
  • Withania somnifera
  • Withanolides
  • Pharmacological
  • Withaferin A
  • Oncogenic pathways
  • Anticancer
  • Glioblastoma
  • Pharmacokinetics
  • Pharmacodynamics
  • Immunomodulation