Journal of Neuro-Oncology

, Volume 131, Issue 2, pp 201–211 | Cite as

Withaferin A and its potential role in glioblastoma (GBM)

Topic Review


Within the Ayurvedic medical tradition of India, Ashwagandha (Withania somnifera) is a well-known herb. A large number of withanolides have been isolated from both its roots and its leaves and many have been assessed for their pharmacological activities. Amongst them, Withaferin A is one of its most bioactive phytoconstituents. Due to the lactonal steroid’s potential to modulate multiple oncogenic pathways, Withaferin A has gained much attention as a possible anti-neoplastic agent. This review focuses on the use of Withaferin A alone, or in combination with other treatments, as a newer option for therapy against the most aggressive variant of brain tumors, Glioblastoma. We survey the various studies that delineate Withaferin A’s anticancer mechanisms, its toxicity profiles, its pharmacokinetics and pharmacodynamics and its immuno-modulating properties.


Ashwagandha Withania somnifera Withanolides Pharmacological Withaferin A Oncogenic pathways Anticancer Glioblastoma Pharmacokinetics Pharmacodynamics Immunomodulation 



We thank the Ben and Catherine Ivy Foundation for their critical support.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11060_2016_2303_MOESM1_ESM.docx (618 kb)
Supplementary material 1 (DOCX 617 KB)
11060_2016_2303_MOESM2_ESM.docx (364 kb)
Supplementary material 2 (DOCX 363 KB)


  1. 1.
    Patel K, Singh RB, Patel DK (2013) Pharmacological and analytical aspects of Withaferin A: a concise report of current scientific literature. Asian Pac J Reprod 2:238–243. doi: 10.1016/S2305-0500(13)60154-2 CrossRefGoogle Scholar
  2. 2.
    Singh N, Bhalla M, De Jager P, Gilca M (2011) An overview on ashwagandha: a rasayana (rejuvenator) of ayurveda. Afr J Tradit Complement Altern Med. doi: 10.4314/ajtcam.v8i5S.9 Google Scholar
  3. 3.
    Alam N, Hossain M, Khalil MI et al (2011) Recent advances in elucidating the biological properties of Withania somnifera and its potential role in health benefits. Phytochem Rev 11:97–112. doi: 10.1007/s11101-011-9221-5 CrossRefGoogle Scholar
  4. 4.
    Tiwari R, Chakraborty S, Saminathan M et al (2014) Ashwagandha (Withania somnifera): role in safeguarding health, immunomodulatory effects, combating infections and therapeutic application: a review. J Biol Sci 2:77–94Google Scholar
  5. 5.
    Khan S, Malik F, Suri KA, Singh J (2009) Molecular insight into the immune up-regulatory properties of the leaf extract of Ashwagandha and identification of Th1 immunostimulatory chemical entity. Vaccine 27:6080–6087. doi: 10.1016/j.vaccine.2009.07.011 CrossRefPubMedGoogle Scholar
  6. 6.
    Kurup PA (1956) Antibiotic principle of the leaves of Withania somnifera. Curr Sci 25:57Google Scholar
  7. 7.
    Kurup PA (1958) The antibacterial principle of Withania somnifera. I. Isolation and antibacterial activity. Antibiot Chemother 8:511Google Scholar
  8. 8.
    Devi PU (2014) Withania somnifera Dunal (Ashwagandha):Potential plant source of a promising dug for cancer chemotherapy and radiosensitization. Indian J Exp Biol 34:927–932Google Scholar
  9. 9.
    Lavie D, Glotter E, Shvo Y (1965) Constituents of Withania somnifera Dun. Part IV. The structure of withaferin A. J Chem Soc Resumed 7517. doi: 10.1039/jr9650007517
  10. 10.
    Shohat B, Gitter S, Abraham A, Lavie D (1967) Antitumor activity of Withaferin A (NSC-101088). Cancer Chemother Rep 51:1–6Google Scholar
  11. 11.
    Budhiraja RD, Krishan P, Sudhir S (2000) Biological activity of Withanolides. J Sci Ind Res 59:904–911Google Scholar
  12. 12.
    Fuska J, Prokska B, Williamson J (1987) Microbiological and chemical dehydrogenation of Withaferin A. Folia Microbiol (Praha) 32:112–115CrossRefGoogle Scholar
  13. 13.
    Fuska J, Khadlova A, Sturdikova M et al (1985) Biotransformation of Withaferin-A by a culture of arthrobacter simplex. Folia Microbiol 30:427–432CrossRefGoogle Scholar
  14. 14.
    Fuska J, Fuskova A, Rosazza P (1984) Novel cytotoxic and antitumor agents.IV. Withaferin A: relation of its structure to the in vitro cytotoxic effects on P388 cells. Neoplasma 31(1):31–36PubMedGoogle Scholar
  15. 15.
    Santagata S, Xu Y, Wijeratne EMK et al (2012) Using the heat-shock response to discover anticancer compounds that target protein homeostasis. ACS Chem Biol 7:340–349. doi: 10.1021/cb200353m CrossRefPubMedGoogle Scholar
  16. 16.
    Berghe WV, Sabbe L, Kaileh M et al (2012) Molecular insight in the multifunctional activities of Withaferin A. Biochem Pharmacol 84:1282–1291. doi: 10.1016/j.bcp.2012.08.027 CrossRefGoogle Scholar
  17. 17.
    Satelli A, Li S (2011) Vimentin in cancer and its potential as a molecular target for cancer therapy. Cell Mol Life Sci 68:3033–3046CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Bargagna-Mohan P, Hamza A, Kim Y et al (2007) The tumor inhibitor and antiangiogenic agent Withaferin A targets the intermediate filament protein vimentin. Chem Biol 14:623–634. doi: 10.1016/j.chembiol.2007.04.010 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Caplan JF, Filipenko NR, Fitzpatrick SL, Waisman DM (2004) Regulation of annexin A2 by reversible glutathionylation. J Biol Chem 279:7740–7750. doi: 10.1074/jbc.M313049200 CrossRefPubMedGoogle Scholar
  20. 20.
    Yokota Y, Bargagna-Mohan P, Ravindranath PP et al (2006) Development of withaferin A analogs as probes of angiogenesis. Bioorg Med Chem Lett 16:2603–2607. doi: 10.1016/j.bmcl.2006.02.039 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Mohan R, Hammers H, Bargagna-Mohan P, Zhan X (2004) Withaferin A is a potent inhibitor or angiogenesis. Angiogenesis 115–22.Google Scholar
  22. 22.
    Yang H, Shi G, Dou QP (2006) The tumor proteasome is a primary target for the natural anticancer compound Withaferin A isolated from “Indian winter cherry”. Mol Pharmacol 71:426–437. doi: 10.1124/mol.106.030015 CrossRefPubMedGoogle Scholar
  23. 23.
    Grover A, Shandilya A, Punetha A et al (2010) Inhibition of the NEMO/IKKβ association complex formation, a novel mechanism associated with the NF-κB activation suppression by Withania somnifera’s key metabolite Withaferin A. BMC Genomics 11:S25. doi: 10.1186/1471-2164-11-S4-S25 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Kaileh M, Berghe WV, Heyerick A (2007) Withaferin A strongly elicits IB kinase hyperphosphorylation concomitant with potent inhibition of its kinase activity. J Biol Chem 282:4253–4264. doi: 10.1074/jbc.M606728200 CrossRefPubMedGoogle Scholar
  25. 25.
    Bernier M (2006) Binding of manumycin A inhibits IkappaB kinase beta activity. J Biol Chem 281:2551–2561. doi: 10.1074/jbc.M511878200 CrossRefPubMedGoogle Scholar
  26. 26.
    Gupta S, Reuter S, Kannappan R, Yadav V (2010) Modification of cysteine 179 of IkappaBalpha kinase by nimbolide leads to down-regulation of NF-kappaB-regulated cell survival and proliferative proteins and sensitization of tumor cells to chemotherapeutic agents. J Biol Chem 285:35406–35417.  doi: 10.1074/jbc.M110.161984 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Kim BH, Lee J-Y, Seo JH et al (2007) Artemisolide is a typical inhibitor of IκB kinase β targeting cysteine-179 residue and down-regulates NF-κB-dependent TNF-α expression in LPS-activated macrophages. Biochem Biophys Res Commun 361:593–598. doi: 10.1016/j.bbrc.2007.07.069 CrossRefPubMedGoogle Scholar
  28. 28.
    Liang M-C, Bardhan S, Pace EA et al (2006) Inhibition of transcription factor NF-κB signaling proteins IKKβ and p65 through specific cysteine residues by epoxyquinone A monomer: correlation with its anti-cancer cell growth activity. Biochem Pharmacol 71:634–645. doi: 10.1016/j.bcp.2005.11.013 CrossRefPubMedGoogle Scholar
  29. 29.
    Palempalli UD, Gandhi U, Kalantari P et al (2009) Gambogic acid covalently modifies IκB kinase-β subunit to mediate suppression of lipopolysaccharide-induced activation of NF-κB in macrophages. Biochem J 419:401. doi: 10.1042/BJ20081482 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Sen N, Banerjee B, Das B, Ganguly A (2007) Apoptosis is induced in leishmanial cells by a novel protein kinase inhibitor withaferin A and is facilitated by apoptotic topoisomerase I-DNA complex. Cell Death Differ 14:358–367. doi: 10.1038/sj.cdd.4402002 CrossRefPubMedGoogle Scholar
  31. 31.
    Grover A, Shandilya A, Agrawal V et al (2011) Blocking the chaperone kinome pathway: mechanistic insights into a novel dual inhibition approach for supra-additive suppression of malignant tumors. Biochem Biophys Res Commun 404:498–503. doi: 10.1016/j.bbrc.2010.12.010 CrossRefPubMedGoogle Scholar
  32. 32.
    Grover A, Shandilya A, Agrawal V et al (2011) Hsp90/Cdc37 Chaperone/co-chaperone complex, a novel junction anticancer target elucidated by the mode of action of herbal drug Withaferin A. BMC Bioinformatics 12:S30. doi: 10.1186/1471-2105-12-S1-S30 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Yu Y, Hamza A, Zhang T et al (2010) Withaferin A targets heat shock protein 90 in pancreatic cancer cells. Biochem Pharmacol 79:542–551. doi: 10.1016/j.bcp.2009.09.017 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Mendillo ML, Santagata S, Koeva M, al et (2013) HSF1 drives a transcriptional program distinct from heat shock to support highly malignant human cancers. PubMed Cent 150:549–562.  doi: 10.1016/j.cell.2012.06.031 Google Scholar
  35. 35.
    Zou J, Guo Y, Guettouche T et al (1998) Repression of heat shock transcription factor HSF1 activation by HSP90 (HSP90 complex) that forms a stress-sensitive complex with HSF1. Cell 94:471–480CrossRefPubMedGoogle Scholar
  36. 36.
    Mehrotra A, Kaul D, Joshi K (2010) LXR-α selectively reprogrammes cancer cells to enter into apoptosis. Mol Cell Biochem 349:41–55. doi: 10.1007/s11010-010-0659-3 CrossRefPubMedGoogle Scholar
  37. 37.
    Min K, Choi K, Kwon TK (2011) Withaferin A down-regulates lipopolysaccharide-induced cyclooxygenase-2 expression and PGE2 production through the inhibition of STAT1/3 activation in microglial cells. Int Immunopharmacol 11:1137–1142. doi: 10.1016/j.intimp.2011.02.029 CrossRefPubMedGoogle Scholar
  38. 38.
    Munagala R, Kausar H, Munjal C, Gupta RC (2011) Withaferin A induces p53-dependent apoptosis by repression of HPV oncogenes and upregulation of tumor suppressor proteins in human cervical cancer cells. Carcinogenesis 32:1697–1705. doi: 10.1093/carcin/bgr192 CrossRefPubMedGoogle Scholar
  39. 39.
    Koduru S, Kumar R, Srinivasan S et al (2010) Notch-1 inhibition by Withaferin-A: a therapeutic target against colon carcinogenesis. Mol Cancer Ther 9:202–210. doi: 10.1158/1535-7163.MCT-09-0771 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Ndlovu MN, Van Lint C, Van Wesemael K et al (2009) Hyperactivated NF-kappaB and AP-1 transcription factors promote highly accessible chromatin and constitutive transcription across the interleukin-6 gene promoter in metastatic breast cancer cells. Mol Cell Biol 29:5488–5504. doi: 10.1128/MCB.01657-08 CrossRefPubMedGoogle Scholar
  41. 41.
    Stan SD, Hahm ER, Warin R, Singh SV (2008) Withaferin A causes foxo3a- and bim-dependent apoptosis and inhibits growth of human breast cancer cells in vivo. Cancer Res 68:7661–7669. doi: 10.1158/0008-5472.CAN-08-1510 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Widodo N, Kaur K, Shrestha BG et al (2007) Selective killing of cancer cells by leaf extract of ashwagandha: identification of a tumor-inhibitory factor and the first molecular insights to its effect. Clin Cancer Res 13:2298–2306. doi: 10.1158/1078-0432.CCR-06-0948 CrossRefPubMedGoogle Scholar
  43. 43.
    Kataria H, Shah N, Kaul SC et al (2011) Water extract of ashwagandha leaves limits proliferation and migration, and induces differentiation in glioma cells. Evid Based Complement Alternat Med 2011:1–12. doi: 10.1093/ecam/nep188 CrossRefGoogle Scholar
  44. 44.
    Thaiparambil JT, Bender L, Ganesh T et al (2011) Withaferin A inhibits breast cancer invasion and metastasis at sub-cytotoxic doses by inducing vimentin disassembly and serine 56 phosphorylation. Int J Cancer 129:2744–2755. doi: 10.1002/ijc.25938 CrossRefPubMedGoogle Scholar
  45. 45.
    Patil D, Gautam M, Mishra S et al (2013) Determination of withaferin A and withanolide A in mice plasma using high-performance liquid chromatography-tandem mass spectrometry: application to pharmacokinetics after oral administration of Withania somnifera aqueous extract. J Pharm Biomed Anal 80:203–212. doi: 10.1016/j.jpba.2013.03.001 CrossRefPubMedGoogle Scholar
  46. 46.
    Gupta RC, Bansal SS, Aqil F et al (2012) Controlled-release systemic delivery—a new concept in cancer chemoprevention. Carcinogenesis 33(8):1608–1615. doi: 10.1093/carcin/bgs209 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Rosazza JP, Nicholas AW, Gustafson ME. (1978) Microbial transformations of natural antitumor agents. 7. 14-alpha-Hydroxylation of withaferin-A by Cunninghamella elegans (NRRL 1393). Steroids 31(5):671–679.  doi: 10.1016/S0039-128X(78)80007-5 CrossRefPubMedGoogle Scholar
  48. 48.
    Gorgan PT (2014) Withaferin A: a novel therapeutic approach for malignant brain tumors. KU ScholarWorks 33(5):1462–1476Google Scholar
  49. 49.
    Panda S, Kar A (1998) Changes in thyroid hormone concentrations after administration of ashwagandha root extract to adult male mice. J PharmPharmacol 50:1065–1068Google Scholar
  50. 50.
    Kupchan (1965) Isolation of Withaferin A. J Am Chem Soc 87(24):5805–5806CrossRefPubMedGoogle Scholar
  51. 51.
    McFarland BC, Hong SW, Rajbhandari R et al (2013) NF-κB-induced IL-6 ensures STAT3 activation and tumor aggressiveness in glioblastoma. PLoS One 8:e78728. doi: 10.1371/journal.pone.0078728 CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Grogan PT, Sarkaria JN, Timmermann BN, Cohen MS (2014) Oxidative cytotoxic agent withaferin A resensitizes temozolomide-resistant glioblastomas via MGMT depletion and induces apoptosis through Akt/mTOR pathway inhibitory modulation. Invest New Drugs 32:604–617. doi: 10.1007/s10637-014-0084-7 CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Shah N, Kataria H, Kaul SC et al (2009) Effect of the alcoholic extract of Ashwagandha leaves and its components on proliferation, migration, and differentiation of glioblastoma cells: Combinational approach for enhanced differentiation. Cancer Sci 100:1740–1747. doi: 10.1111/j.1349-7006.2009.01236.x CrossRefPubMedGoogle Scholar
  54. 54.
    Grogan PT, Sleder KD, Stecklein SR, Cohen MS (2011) Vassobia breviflora root-extract withaferin a as a novel cytotoxic and synergistic agent against malignant gliomas. J Surg Res 165:311. doi: 10.1016/j.jss.2010.11.352 CrossRefGoogle Scholar
  55. 55.
    Grogan P, Samadi AK, Cohen MS (2010) A novel cytotoxic agent induces apoptosis in malignant gliomas in vitro. J Surg Res 158:341–342. doi: 10.1016/j.jss.2009.11.468 CrossRefGoogle Scholar
  56. 56.
    Zhang B, Shah S, Prince J et al (2014) The antitumor effects of Withaferin A in glioblastoma stem cells. Neuro Oncol 16:v79–v95. doi: 10.1093/neuonc/nou255 Google Scholar
  57. 57.
    Chang E, Pohling C, Natarajan A et al (2016) AshwaMAX and Withaferin A inhibits gliomas in cellular and murine orthotopic models. J Neurooncol 126:253–264. doi: 10.1007/s11060-015-1972-1 CrossRefPubMedGoogle Scholar
  58. 58.
    Grogan PT, Sleder KD, Samadi AK et al (2012) Cytotoxicity of withaferin A in glioblastomas involves induction of an oxidative stress-mediated heat shock response while altering Akt/mTOR and MAPK signaling pathways. Invest New Drugs 31:545–557. doi: 10.1007/s10637-012-9888-5 CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Palyi I, Tyihak E, Palyi V (2015) Cytological effects of compounds isolated from Withania Somnifera Dun. Herba Hung 8:73–78Google Scholar
  60. 60.
    Batia S, Gitter S, Lavie D (1970) Effect of Withaferin on Ehrlich carcinoma-cytological observation. Int J Cancer 5(2):244–252CrossRefGoogle Scholar
  61. 61.
    Shohat B, Joshua H (1971) Effect of Withaferin A on ehrilch ascites tumor cells II. target tumor cell destruction in vivo by immune activation. Int J Cancer 8:487–496. doi: 10.1002/ijc.2910080317 CrossRefPubMedGoogle Scholar
  62. 62.
    Shohat B (1973) Effect of Withaferin A on cells in tissue culture. ZKrebsforsch 80:97–102CrossRefGoogle Scholar
  63. 63.
    Yoshida M, Hoshi A, Kuretani K (1979) Relationship between chemical structure and antitumor activity of Withaferin A analogues. J Pharm Dyn 2:92–97CrossRefGoogle Scholar
  64. 64.
    Begum VH, Sadique J (1987) Effect of Withania somnifera on glycosaminoglycan synthesis in carrageenin-induced AiR pouch granuloma. Biochem Med Metab Biol 38:272–277CrossRefPubMedGoogle Scholar
  65. 65.
    Devi PU, Sharada AC, Solomon FE (1993) Antitumor and Radiosensitizing effect of Withania somnifera (Ashwagandha) on a transplantable mouse tumor, Sarcoma-180. Indian J Exp Biol 31:607–611PubMedGoogle Scholar
  66. 66.
    Devi PU, Sharada AC, Solomon FE (1995) In vivo growth inhibitory and radiosensitizing effects of Withaferin A on mouse Ehrlich ascites carcinoma. Cancer Lett 95:189–193CrossRefPubMedGoogle Scholar
  67. 67.
    Sharada AC, Solomon FE (1996) Antitumor and radiosensitizing effect of Withania A on mouse ehrlich ascities carcinoma in vivo. Acta Oncol 35:95–100CrossRefPubMedGoogle Scholar
  68. 68.
    Devi PU (1996) Withania somnifera Dunal (Ashwagandha): potential plant source of a promising drug for cancer chemotherapy and radiosensitization. Indian J Exp Biol 34(10):927–932PubMedGoogle Scholar
  69. 69.
    Devi PU, Akagi K, Ostapenko V, al et (2003) Withaferin A: a new radiosensitizer from the Indian medicinal plant Withania somnifera. Int J Radiat Biol 69:193–197CrossRefGoogle Scholar
  70. 70.
    Devi PU, Kamath R (2003) Radiosensitizing effect of Withaferin A combined with hyperthermia on mouse fibrosarcoma and melanoma. J Radiat Res 44:1–6CrossRefGoogle Scholar
  71. 71.
    Mandal C, Dutta A, Mallick A et al (2008) Withaferin A induces apoptosis by activating p38 mitogen-activated protein kinase signaling cascade in leukemic cells of lymphoid and myeloid origin through mitochondrial death cascade. Apoptosis 13:1450–1464. doi: 10.1007/s10495-008-0271-0 CrossRefPubMedGoogle Scholar
  72. 72.
    Widodo N, Shah N, Priyandoko D et al (2009) Deceleration of senescence in normal human fibroblasts by withanone extracted from ashwagandha leaves. J Gerontol A Biol Sci Med Sci 64:1031–1038. doi: 10.1093/gerona/glp088 CrossRefPubMedGoogle Scholar
  73. 73.
    Samadi A, Loo P, Mukerji R et al (2009) A novel HSP90 modulator with selective activity against thyroid cancers in vitro. Surgery 146:1196–1207. doi: 10.1016/j.surg.2009.09.028 CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Devi PU, Sharada AC, Solomon FE, Kamath MS (1992) In vivo growth inhibitory effect of Withania Somnifera (Ashwagandha) on a transplantable mouse model, Sarcoma 180. Indian J Exp Biol 30:169–172PubMedGoogle Scholar
  75. 75.
    Shohat B, Kirson I, Lavie D (1978)  Immunosuppressive activity of two plant steroidal lactones withaferin A and withanolide.  Biomedicine 28(1):18–24PubMedGoogle Scholar
  76. 76.
    Rasool M, Varalakshmi P (2006) Immunomodulatory role of Withania somnifera root powder on experimental induced inflammation: an in vivo and in vitro study. Vascul Pharmacol 44:406–410. doi: 10.1016/j.vph.2006.01.015 CrossRefPubMedGoogle Scholar
  77. 77.
    Davis L, Kuttan G (2000) Immunomodulatory activity of Withania. J Ethnopharmacol 71:193–200CrossRefPubMedGoogle Scholar
  78. 78.
    Verma SK, Shaban A, Purohit R et al (2012) Immunomodulatory activity of Withania somnifera (L.). J Chem Pharm Res 4:559–561Google Scholar
  79. 79.
    Bani S, Gautam M, Sheikh FA et al (2006) Selective Th1 up-regulating activity of Withania somnifera aqueous extract in an experimental system using flow cytometry. J Ethnopharmacol 107:107–115. doi: 10.1016/j.jep.2006.02.016 CrossRefPubMedGoogle Scholar
  80. 80.
    Malik F, Singh J, Khajuria A et al (2007) A standardized root extract of Withania somnifera and its major constituent withanolide A elicit humoral and cell-mediated immune responses by up regulation of Th1-dominant polarization in BALB/c mice. Life Sci 80:1525–1538. doi: 10.1016/j.lfs.2007.01.029 CrossRefPubMedGoogle Scholar
  81. 81.
    Malik F, Kumar A, Bhushan S et al (2009) Immune modulation and apoptosis induction: two sides of antitumoural activity of a standardized herbal formulation of Withania somnifera. Eur J Cancer 45:1494–1509. doi: 10.1016/j.ejca.2009.01.034 CrossRefPubMedGoogle Scholar
  82. 82.
    Sharada AC, Solomon FE, Devi PU (1993) Toxicity of Withania somnifera root extract in rats and mice. Int J Pharmacog 3:205–212CrossRefGoogle Scholar
  83. 83.
    Raut A, Rege N, Shirolkar S et al (2012) Exploratory study to evaluate tolerability, safety, and activity of Ashwagandha (Withania somnifera) in healthy volunteers. J Ayurveda Integr Med 3:111. doi: 10.4103/0975-9476.100168 CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Sehgal VN, Verma P, bhattacharya SN (2014) fixed drug eruption caused by ashwagandha (Wihania somnifera):a widely used ayurvedic drug. Case Study 10:48–49.Google Scholar
  85. 85.
    Toniolo M, Ceschi A et al (2011) Haemolytic anaemia and abdominal pain—a cause not to be missed. Br J Clin Pharmacol 1–2. doi: 10.1111/j.1365-2125.2011.03909.x PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Jasdeep Dhami
    • 1
  • Edwin Chang
    • 2
  • Sanjiv S. Gambhir
    • 2
  1. 1.Health Sciences CenterTexas Tech UniversityEl PasoUSA
  2. 2.Department of Radiology, Molecular Imaging Program at Stanford and Canary Center at Stanford for Early Cancer DetectionStanford UniversityPalo AltoUSA

Personalised recommendations