Journal of Neuro-Oncology

, Volume 130, Issue 1, pp 43–52 | Cite as

The role of AKT isoforms in glioblastoma: AKT3 delays tumor progression

  • Anna JoyEmail author
  • Manisha Kapoor
  • Joseph Georges
  • Lacy Butler
  • Yongchang Chang
  • Chaokun Li
  • Acacia Crouch
  • Ivan Smirnov
  • Mitsitoshi Nakada
  • James Hepler
  • Max Marty
  • Burt G. Feuerstein
Laboratory Investigation


The growth factor receptor/PI3K/AKT pathway is an important drug target in many cancers including Glioblastoma. AKT, a key node in the pathway, has 3 isoforms, AKT1, AKT2 and AKT3. Here we investigate their role in GBM. We find each activated, ser473 phosphorylated isoform is present in some GBMs but expression patterns vary. There is a direct relationship between human GBM patient outcome and both AKT1 and AKT2 mRNA levels, but an inverse relationship with AKT3 mRNA. Furthermore, AKT3 mRNA levels were high in a less aggressive GBM subtype. Overexpressing AKT3 improves survival in a rodent model of GBM and decreases colony forming efficiency, but not growth rate, in glioma cells. Silencing AKT3 slows cell cycle progression in one cell line and increases apoptosis in another. Our studies of AKT3 substrates indicate (1) silencing both AKT2 and AKT3 reduces GSK3 phosphorylation (2) only AKT2 silencing reduces S6 phosphorylation. Since S6 phosphorylation is a marker of mTORC1 activity this indicates that AKT2 activates mTORC1, but AKT3 does not. Our results indicate AKT isoforms have different roles and downstream substrates in GBM. Unexpectedly, they indicate AKT3 delays tumor progression. Therefore strategies that inhibit AKT3 may be unhelpful in some GBM patients.


Glioblastoma GBM AKT AKT1 AKT2 AKT3 



This work was supported by KO1 NS064952 from the National Institutes of Health to AMJ, by 1R21EB020237 from the National Institutes of Health and an award from the Bruce Halle foundation to BGF and Barrow Neurological Foundation awards to AMJ and BGF.


This study was funded by the National Institute of Neurological Disorders and Stroke at the National Institutes of Health (K01 NS064952 to A.J.); by the National Institute of Biomedical Imaging and Bioengineering at the National Institutes of Health (R21 EB020237 to BGF); and by the Barrow Neurological Foundation and Diane and Bruce Halle Fund (B.G.F. and A.J.). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human participants and/or animals

Ethical approval human All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional review board and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Ethical approval animal All applicable international, national, and institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were approved by our Institutional Animal Care and Use Committee (IACUC) and were in accordance with the ethical standards of the institution at which the studies were conducted.

Informed consent

For this type of study formal consent is not required.

Supplementary material

11060_2016_2220_MOESM1_ESM.pdf (183 kb)
Supplementary material 1 (PDF 182 KB)
11060_2016_2220_MOESM2_ESM.tif (718 kb)
Supplemental Fig S1 AKT3V1 is the predominant alternately spliced mRNA in GBM cell lines. (a) Schematic illustration of the domain structure of AKT3V1 and AKT3V2. (b) QRT-PCR analysis of AKT3V1 and AKT3V2 mRNA in GBM cell lines. (TIF 718 KB)
11060_2016_2220_MOESM3_ESM.tif (381 kb)
Supplemental Fig S2 Effect of silencing each AKT isoform on flow cytometric analysis of DNA content in PI stained glioma cells. (a) U87 and (b) U251 cells were incubated for 3 days after exposure to the specified AKT isoform siRNA then the histogram of count number vs PI fluorescence obtained. (a) % cells in each phase of the cell cycle was determined using FCS express. Percent cells with DNA content greater than G2/M in U87 cells is indicated. (b) Percent U251 cells in subG0 peak is indicated. (TIF 380 KB)


  1. 1.
    Manning BD, Cantley LC (2007) AKT/PKB signaling: navigating downstream. Cell 129(7):1261–1274. doi: 10.1016/j.cell.2007.06.009 PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Chen WS, Xu PZ, Gottlob K, Chen ML, Sokol K, Shiyanova T, Roninson I, Weng W, Suzuki R, Tobe K, Kadowaki T, Hay N (2001) Growth retardation and increased apoptosis in mice with homozygous disruption of the Akt1 gene. Genes Dev 15(17):2203–2208PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Cho H, Mu J, Kim JK, Thorvaldsen JL, Chu Q, Crenshaw EB 3rd, Kaestner KH, Bartolomei MS, Shulman GI, Birnbaum MJ (2001) Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKB beta). Science 292(5522):1728–1731PubMedCrossRefGoogle Scholar
  4. 4.
    Easton RM, Cho H, Roovers K, Shineman DW, Mizrahi M, Forman MS, Lee VM, Szabolcs M, de Jong R, Oltersdorf T, Ludwig T, Efstratiadis A, Birnbaum MJ (2005) Role for Akt3/protein kinase Bgamma in attainment of normal brain size. Mol Cell Biol 25(5):1869–1878PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Tschopp O, Yang ZZ, Brodbeck D, Dummler BA, Hemmings-Mieszczak M, Watanabe T, Michaelis T, Frahm J, Hemmings BA (2005) Essential role of protein kinase B gamma (PKB gamma/Akt3) in postnatal brain development but not in glucose homeostasis. Development 132(13):2943–2954PubMedCrossRefGoogle Scholar
  6. 6.
    Poduri A, Evrony GD, Cai X, Elhosary PC, Beroukhim R, Lehtinen MK, Hills LB, Heinzen EL, Hill A, Hill RS, Barry BJ, Bourgeois BF, Riviello JJ, Barkovich AJ, Black PM, Ligon KL, Walsh CA (2012) Somatic activation of AKT3 causes hemispheric developmental brain malformations. Neuron 74(1):41–48. doi: 10.1016/j.neuron.2012.03.010 PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Mirzaa GM, Riviere JB, Dobyns WB (2013) Megalencephaly syndromes and activating mutations in the PI3K-AKT pathway: MPPH and MCAP. Am J Med Genet C Semin Med Genet 163C(2):122–130. doi: 10.1002/ajmg.c.31361 PubMedCrossRefGoogle Scholar
  8. 8.
    Riviere JB, Mirzaa GM, O’Roak BJ, Beddaoui M, Alcantara D, Conway RL, St-Onge J, Schwartzentruber JA, Gripp KW, Nikkel SM, Worthylake T, Sullivan CT, Ward TR, Butler HE, Kramer NA, Albrecht B, Armour CM, Armstrong L, Caluseriu O, Cytrynbaum C, Drolet BA, Innes AM, Lauzon JL, Lin AE, Mancini GM, Meschino WS, Reggin JD, Saggar AK, Lerman-Sagie T, Uyanik G, Weksberg R, Zirn B, Beaulieu CL, Majewski J, Bulman DE, O’Driscoll M, Shendure J, Graham JM Jr, Boycott KM, Dobyns WB (2012) De novo germline and postzygotic mutations in AKT3, PIK3R2 and PIK3CA cause a spectrum of related megalencephaly syndromes. Nat Genet 44(8):934–940. doi: 10.1038/ng.2331 PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Addie M, Ballard P, Buttar D, Crafter C, Currie G, Davies BR, Debreczeni J, Dry H, Dudley P, Greenwood R, Johnson PD, Kettle JG, Lane C, Lamont G, Leach A, Luke RW, Morris J, Ogilvie D, Page K, Pass M, Pearson S, Ruston L (2013) Discovery of 4-amino-N-[(1S)-1-(4-chlorophenyl)-3-hydroxypropyl]–1-(7H-pyrrolo[2,3-d]pyrimidin–4-yl)piperidine-4-carboxamide (AZD5363), an orally bioavailable, potent inhibitor of Akt kinases. J Med Chem 56(5):2059–2073. doi: 10.1021/jm301762v PubMedCrossRefGoogle Scholar
  10. 10.
    Rhodes N, Heerding DA, Duckett DR, Eberwein DJ, Knick VB, Lansing TJ, McConnell RT, Gilmer TM, Zhang SY, Robell K, Kahana JA, Geske RS, Kleymenova EV, Choudhry AE, Lai Z, Leber JD, Minthorn EA, Strum SL, Wood ER, Huang PS, Copeland RA, Kumar R (2008) Characterization of an Akt kinase inhibitor with potent pharmacodynamic and antitumor activity. Cancer Res 68(7):2366–2374. doi: 10.1158/0008-5472.CAN-07-5783 PubMedCrossRefGoogle Scholar
  11. 11.
    Dumble M, Crouthamel MC, Zhang SY, Schaber M, Levy D, Robell K, Liu Q, Figueroa DJ, Minthorn EA, Seefeld MA, Rouse MB, Rabindran SK, Heerding DA, Kumar R (2014) Discovery of novel AKT inhibitors with enhanced anti-tumor effects in combination with the MEK inhibitor. PLoS ONE 9(6):e100880. doi: 10.1371/journal.pone.0100880 PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Grimshaw KM, Hunter LJ, Yap TA, Heaton SP, Walton MI, Woodhead SJ, Fazal L, Reule M, Davies TG, Seavers LC, Lock V, Lyons JF, Thompson NT, Workman P, Garrett MD (2010) AT7867 is a potent and oral inhibitor of AKT and p70 S6 kinase that induces pharmacodynamic changes and inhibits human tumor xenograft growth. Mol Cancer Ther 9(5):1100–1110. doi: 10.1158/1535-7163.MCT-09-0986 PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Lin J, Sampath D, Nannini MA, Lee BB, Degtyarev M, Oeh J, Savage H, Guan Z, Hong R, Kassees R, Lee LB, Risom T, Gross S, Liederer BM, Koeppen H, Skelton NJ, Wallin JJ, Belvin M, Punnoose E, Friedman LS, Lin K (2013) Targeting activated Akt with GDC-0068, a novel selective Akt inhibitor that is efficacious in multiple tumor models. Clin Cancer Res 19(7):1760–1772. doi: 10.1158/1078-0432.CCR-12-3072 PubMedCrossRefGoogle Scholar
  14. 14.
    Pu P, Kang C, Li J, Jiang H (2004) Antisense and dominant-negative AKT2 cDNA inhibits glioma cell invasion. Tumour Biol 25(4):172–178. doi: 10.1159/000081099 PubMedCrossRefGoogle Scholar
  15. 15.
    Endersby R, Zhu X, Hay N, Ellison DW, Baker SJ (2011) Nonredundant functions for Akt isoforms in astrocyte growth and gliomagenesis in an orthotopic transplantation model. Cancer Res 71(12):4106–4116. doi: 10.1158/0008-5472.CAN-10-3597 PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Degtyarev M, De Maziere A, Orr C, Lin J, Lee BB, Tien JY, Prior WW, van Dijk S, Wu H, Gray DC, Davis DP, Stern HM, Murray LJ, Hoeflich KP, Klumperman J, Friedman LS, Lin K (2008) Akt inhibition promotes autophagy and sensitizes PTEN-null tumors to lysosomotropic agents. J Cell Biol 183(1):101–116. doi: 10.1083/jcb.200801099 PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Li C, Wen A, Shen B, Lu J, Huang Y, Chang Y (2011) FastCloning: a highly simplified, purification-free, sequence- and ligation-independent PCR cloning method. BMC Biotechnol 11:92. doi: 10.1186/1472-6750-11-92 PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Nunez R (2001) DNA measurement and cell cycle analysis by flow cytometry. Curr Issues Mol Biol 3(3):67–70PubMedGoogle Scholar
  19. 19.
    Alessi DR, James SR, Downes CP, Holmes AB, Gaffney PR, Reese CB, Cohen P (1997) Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Balpha. Curr Biol 7(4):261–269PubMedCrossRefGoogle Scholar
  20. 20.
    Ermoian RP, Furniss CS, Lamborn KR, Basila D, Berger MS, Gottschalk AR, Nicholas MK, Stokoe D, Haas-Kogan DA (2002) Dysregulation of PTEN and protein kinase B is associated with glioma histology and patient survival. Clin Cancer Res 8(5):1100–1106PubMedGoogle Scholar
  21. 21.
    Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD, Miller CR, Ding L, Golub T, Mesirov JP, Alexe G, Lawrence M, O’Kelly M, Tamayo P, Weir BA, Gabriel S, Winckler W, Gupta S, Jakkula L, Feiler HS, Hodgson JG, James CD, Sarkaria JN, Brennan C, Kahn A, Spellman PT, Wilson RK, Speed TP, Gray JW, Meyerson M, Getz G, Perou CM, Hayes DN (2010) Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17(1):98–110PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Nigro JM, Misra A, Zhang L, Smirnov I, Colman H, Griffin C, Ozburn N, Chen M, Pan E, Koul D, Yung WK, Feuerstein BG, Aldape KD (2005) Integrated array-comparative genomic hybridization and expression array profiles identify clinically relevant molecular subtypes of glioblastoma. Cancer Res 65(5):1678–1686PubMedCrossRefGoogle Scholar
  23. 23.
    Phillips HS, Kharbanda S, Chen R, Forrest WF, Soriano RH, Wu TD, Misra A, Nigro JM, Colman H, Soroceanu L, Williams PM, Modrusan Z, Feuerstein BG, Aldape K (2006) Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell 9(3):157–173. doi: 10.1016/j.ccr.2006.02.019 PubMedCrossRefGoogle Scholar
  24. 24.
    Mischel PS, Shai R, Shi T, Horvath S, Lu KV, Choe G, Seligson D, Kremen TJ, Palotie A, Liau LM, Cloughesy TF, Nelson SF (2003) Identification of molecular subtypes of glioblastoma by gene expression profiling. Oncogene 22(15):2361–2373PubMedCrossRefGoogle Scholar
  25. 25.
    Brennan C, Momota H, Hambardzumyan D, Ozawa T, Tandon A, Pedraza A, Holland E (2009) Glioblastoma subclasses can be defined by activity among signal transduction pathways and associated genomic alterations. PLoS ONE 4(11):e7752. doi: 10.1371/journal.pone.0007752 PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Noushmehr H, Weisenberger DJ, Diefes K, Phillips HS, Pujara K, Berman BP, Pan F, Pelloski CE, Sulman EP, Bhat KP, Verhaak RG, Hoadley KA, Hayes DN, Perou CM, Schmidt HK, Ding L, Wilson RK, Van Den Berg D, Shen H, Bengtsson H, Neuvial P, Cope LM, Buckley J, Herman JG, Baylin SB, Laird PW, Aldape K (2010) Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. Cancer Cell 17(5):510–522. doi: 10.1016/j.ccr.2010.03.017 PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Joy A, Ramesh A, Smirnov I, Reiser M, Misra A, Shapiro WR, Mills GB, Kim S, Feuerstein BG (2014) AKT pathway genes define 5 prognostic subgroups in glioblastoma. PLoS ONE 9(7):e100827. doi: 10.1371/journal.pone.0100827 PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Brodbeck D, Hill MM, Hemmings BA (2001) Two splice variants of protein kinase B gamma have different regulatory capacity depending on the presence or absence of the regulatory phosphorylation site serine 472 in the carboxyl-terminal hydrophobic domain. J Biol Chem 276(31):29550–29558PubMedCrossRefGoogle Scholar
  29. 29.
    Mure H, Matsuzaki K, Kitazato KT, Mizobuchi Y, Kuwayama K, Kageji T, Nagahiro S (2010) Akt2 and Akt3 play a pivotal role in malignant gliomas. Neuro Oncol 12(3):221–232. doi: 10.1093/neuonc/nop026 PubMedCrossRefGoogle Scholar
  30. 30.
    Turner KM, Sun Y, Ji P, Granberg KJ, Bernard B, Hu L, Cogdell DE, Zhou X, Yli-Harja O, Nykter M, Shmulevich I, Yung WK, Fuller GN, Zhang W (2015) Genomically amplified Akt3 activates DNA repair pathway and promotes glioma progression. Proc Natl Acad Sci USA 112(11):3421–3426. doi: 10.1073/pnas.1414573112 PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Andjelkovic M, Alessi DR, Meier R, Fernandez A, Lamb NJ, Frech M, Cron P, Cohen P, Lucocq JM, Hemmings BA (1997) Role of translocation in the activation and function of protein kinase B. J Biol Chem 272(50):31515–31524PubMedCrossRefGoogle Scholar
  32. 32.
    Cui Y, Lin J, Zuo J, Zhang L, Dong Y, Hu G, Luo C, Chen J, Lu Y (2015) AKT2-knockdown suppressed viability with enhanced apoptosis, and attenuated chemoresistance to temozolomide of human glioblastoma cells in vitro and in vivo. Onco Targets Ther 8:1681–1690. doi: 10.2147/OTT.S83795 PubMedPubMedCentralGoogle Scholar
  33. 33.
    Zhang J, Huang K, Shi Z, Zou J, Wang Y, Jia Z, Zhang A, Han L, Yue X, Liu N, Jiang T, You Y, Pu P, Kang C (2011) High beta-catenin/Tcf-4 activity confers glioma progression via direct regulation of AKT2 gene expression. Neuro Oncol 13(6):600–609. doi: 10.1093/neuonc/nor034 PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Hu B, Emdad L, Bacolod MD, Kegelman TP, Shen XN, Alzubi MA, Das SK, Sarkar D, Fisher PB (2014) Astrocyte elevated gene-1 interacts with Akt isoform 2 to control glioma growth, survival, and pathogenesis. Cancer Res 74(24):7321–7332. doi: 10.1158/0008-5472.CAN-13-2978 PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Hay N, Sonenberg N (2004) Upstream and downstream of mTOR. Genes Dev 18(16):1926–1945. doi: 10.1101/gad.1212704 PubMedCrossRefGoogle Scholar
  36. 36.
    Huang TT, Sarkaria SM, Cloughesy TF, Mischel PS (2009) Targeted therapy for malignant glioma patients: lessons learned and the road ahead. Neurotherapeutics 6(3):500–512. doi: 10.1016/j.nurt.2009.04.008 PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Shimobayashi M, Hall MN (2014) Making new contacts: the mTOR network in metabolism and signalling crosstalk. Nat Rev Mol Cell Biol 15(3):155–162. doi: 10.1038/nrm3757 PubMedCrossRefGoogle Scholar
  38. 38.
    Laplante M, Sabatini DM (2012) mTOR signaling in growth control and disease. Cell 149(2):274–293. doi: 10.1016/j.cell.2012.03.017 PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Lee JH, Huynh M, Silhavy JL, Kim S, Dixon-Salazar T, Heiberg A, Scott E, Bafna V, Hill KJ, Collazo A, Funari V, Russ C, Gabriel SB, Mathern GW, Gleeson JG (2012) De novo somatic mutations in components of the PI3K-AKT3-mTOR pathway cause hemimegalencephaly. Nat Genet 44(8):941–945. doi: 10.1038/ng.2329 PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Ballif BC, Rosenfeld JA, Traylor R, Theisen A, Bader PI, Ladda RL, Sell SL, Steinraths M, Surti U, McGuire M, Williams S, Farrell SA, Filiano J, Schnur RE, Coffey LB, Tervo RC, Stroud T, Marble M, Netzloff M, Hanson K, Aylsworth AS, Bamforth JS, Babu D, Niyazov DM, Ravnan JB, Schultz RA, Lamb AN, Torchia BS, Bejjani BA, Shaffer LG (2012) High-resolution array CGH defines critical regions and candidate genes for microcephaly, abnormalities of the corpus callosum, and seizure phenotypes in patients with microdeletions of 1q43q44. Hum Genet 131(1):145–156. doi: 10.1007/s00439-011-1073-y PubMedCrossRefGoogle Scholar
  41. 41.
    Boland E, Clayton-Smith J, Woo VG, McKee S, Manson FD, Medne L, Zackai E, Swanson EA, Fitzpatrick D, Millen KJ, Sherr EH, Dobyns WB, Black GC (2007) Mapping of deletion and translocation breakpoints in 1q44 implicates the serine/threonine kinase AKT3 in postnatal microcephaly and agenesis of the corpus callosum. Am J Hum Genet 81(2):292–303. doi: 10.1086/519999 PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Zhang J, Shemezis JR, McQuinn ER, Wang J, Sverdlov M, Chenn A (2013) AKT activation by N-cadherin regulates beta-catenin signaling and neuronal differentiation during cortical development. Neural Dev 8:7. doi: 10.1186/1749-8104-8-7 PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Castro DS, Martynoga B, Parras C, Ramesh V, Pacary E, Johnston C, Drechsel D, Lebel-Potter M, Garcia LG, Hunt C, Dolle D, Bithell A, Ettwiller L, Buckley N, Guillemot F (2011) A novel function of the proneural factor Ascl1 in progenitor proliferation identified by genome-wide characterization of its targets. Genes Dev 25(9):930–945. doi: 10.1101/gad.627811 PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Anna Joy
    • 1
    • 5
    Email author
  • Manisha Kapoor
    • 1
  • Joseph Georges
    • 1
  • Lacy Butler
    • 1
  • Yongchang Chang
    • 1
  • Chaokun Li
    • 1
  • Acacia Crouch
    • 1
  • Ivan Smirnov
    • 2
  • Mitsitoshi Nakada
    • 3
  • James Hepler
    • 1
  • Max Marty
    • 1
  • Burt G. Feuerstein
    • 4
  1. 1.St. Josephs Hospital and Medical CenterPhoenixUSA
  2. 2.University of California at San FranciscoSan FranciscoUSA
  3. 3.Department of NeurosurgeryKanazawa UniversityKanazawaJapan
  4. 4.Department of NeurologyUniversity of Arizona College of MedicinePhoenixUSA
  5. 5.PhoenixUSA

Personalised recommendations