Advertisement

Journal of Neuro-Oncology

, Volume 130, Issue 2, pp 377–382 | Cite as

Future directions of operative neuro-oncology

  • Robert C. Rennert
  • David R. Santiago-Dieppa
  • Javier Figueroa
  • Nader Sanai
  • Bob S. CarterEmail author
Topic Review

Abstract

Recent technological advancements have drastically improved the safety and surgical precision of operative neuro-oncology. These include techniques for avoiding critical functional structures through pre-operative mapping and trajectory planning, as well the development and refinement of minimally invasive surgical approaches. Innovations in intra-operative tumor mapping, and post-resection tumor ablation have further combined to improve surgical outcomes. This review highlights such advancements and discusses future directions within operative neuro-oncology.

Keywords

Neuro-oncologic surgery Minimally invasive surgery Pre-operative mapping 

Notes

Compliance with ethical standards

Conflict of interest

R.C.R., D.R.S.D., J.F., N.S., and B.S.C. have no conflict of interest to report.

Disclosures

This manuscript was prepared without external funding.

References

  1. 1.
    Wakana S, Jiang H, Nagae-Poetscher LM, van Zijl PC, Mori S (2004) Fiber tract-based atlas of human white matter anatomy. Radiology 230:77–87CrossRefPubMedGoogle Scholar
  2. 2.
    Nimsky C, Bauer M, Carl B (2016) Merits and limits of tractography techniques for the uninitiated. Adv Tech Stand Neurosurg 43:37–60CrossRefGoogle Scholar
  3. 3.
    McDonald CR, White NS, Farid N, Lai G, Kuperman JM, Bartsch H, Hagler DJ, Kesari S, Carter BS, Chen CC, Dale AM (2013) Recovery of white matter tracts in regions of peritumoral FLAIR hyperintensity with use of restriction spectrum imaging. AJNR Am J Neuroradiol 34:1157–1163CrossRefPubMedGoogle Scholar
  4. 4.
    Picht T (2014) Current and potential utility of transcranial magnetic stimulation in the diagnostics before brain tumor surgery. CNS Oncol 3:299–310CrossRefPubMedGoogle Scholar
  5. 5.
    Picht T, Frey D, Thieme S, Kliesch S, Vajkoczy P (2016) Presurgical navigated TMS motor cortex mapping improves outcome in glioblastoma surgery: a controlled observational study. J Neurooncol 126:535–543CrossRefPubMedGoogle Scholar
  6. 6.
    Frey D, Schilt S, Strack V, Zdunczyk A, Rösler J, Niraula B, Vajkoczy P, Picht T (2014) Navigated transcranial magnetic stimulation improves the treatment outcome in patients with brain tumors in motor eloquent locations. Neuro-oncology 16:1365–1372CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Picht T, Schulz J, Vajkoczy P (2013) The preoperative use of navigated transcranial magnetic stimulation facilitates early resection of suspected low-grade gliomas in the motor cortex. Acta Neurochir (Wien) 155:1813–1821CrossRefGoogle Scholar
  8. 8.
    Krieg SM, Sabih J, Bulubasova L, Obermueller T, Negwer C, Janssen I, Shiban E, Meyer B, Ringel F (2014) Preoperative motor mapping by navigated transcranial magnetic brain stimulation improves outcome for motor eloquent lesions. Neuro-oncology 16:1274–1282CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Coburger J, Musahl C, Henkes H, Horvath-Rizea D, Bittl M, Weissbach C, Hopf N (2013) Comparison of navigated transcranial magnetic stimulation and functional magnetic resonance imaging for preoperative mapping in rolandic tumor surgery. Neurosurg Rev 36:65–75 (discussion 75–66)CrossRefPubMedGoogle Scholar
  10. 10.
    Reisch R, Stadie A, Kockro RA, Hopf N (2013) The keyhole concept in neurosurgery. World Neurosurg 79:S17.e9–S17.e13CrossRefGoogle Scholar
  11. 11.
    Renovanz M, Hickmann AK, Gutenberg A, Bittl M, Hopf NJ (2015) Does size matter? Minimally invasive approach in pediatric neurosurgery—a review of 125 minimally invasive surgeries in children: clinical history and operative results. Childs Nerv Syst 31:665–674CrossRefPubMedGoogle Scholar
  12. 12.
    Fukamachi A, Koizumi H, Nukui H (1985) Postoperative intracerebral hemorrhages: a survey of computed tomographic findings after 1074 intracranial operations. Surg Neurol 23:575–580CrossRefPubMedGoogle Scholar
  13. 13.
    Herrera SR, Shin JH, Chan M, Kouloumberis P, Goellner E, Slavin KV (2010) Use of transparent plastic tubular retractor in surgery for deep brain lesions: a case series. Surg Technol Int 19:47–50PubMedGoogle Scholar
  14. 14.
    Eliyas JK, Glynn R, Kulwin CG, Rovin R, Young R, Alzate J, Pradilla G, Shah MV, Kassam A, Ciric I, Bailes J (2016) Minimally invasive transsulcal resection of intraventricular and periventricular lesions through a tubular retractor system: multi-centric experience and results. World Neurosurg 90:556–564CrossRefPubMedGoogle Scholar
  15. 15.
    Recinos PF, Raza SM, Jallo GI, Recinos VR (2011) Use of a minimally invasive tubular retraction system for deep-seated tumors in pediatric patients. J Neurosurg Pediatr 7:516–521CrossRefPubMedGoogle Scholar
  16. 16.
    Ginat DT, Swearingen B, Curry W, Cahill D, Madsen J, Schaefer PW (2014) 3 T intraoperative MRI for brain tumor surgery. J Magn Reson Imaging 39:1357–1365CrossRefPubMedGoogle Scholar
  17. 17.
    Kuhnt D, Becker A, Ganslandt O, Bauer M, Buchfelder M, Nimsky C (2011) Correlation of the extent of tumor volume resection and patient survival in surgery of glioblastoma multiforme with high-field intraoperative MRI guidance. Neuro-oncology 13:1339–1348CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Napolitano M, Vaz G, Lawson TM, Docquier MA, van Maanen A, Duprez T, Raftopoulos C (2014) Glioblastoma surgery with and without intraoperative MRI at 3.0 T. Neurochirurgie 60:143–150CrossRefPubMedGoogle Scholar
  19. 19.
    Zhao S, Wu J, Wang C, Liu H, Dong X, Shi C, Liu Y, Teng L, Han D, Chen X, Yang G, Wang L, Shen C, Li H (2013) Intraoperative fluorescence-guided resection of high-grade malignant gliomas using 5-aminolevulinic acid-induced porphyrins: a systematic review and meta-analysis of prospective studies. PLoS One 8:e63682CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Stummer W, Pichlmeier U, Meinel T, Wiestler OD, Zanella F, Reulen HJ, ALA-Glioma Study Group (2006) Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial. Lancet Oncol 7: 392–401CrossRefPubMedGoogle Scholar
  21. 21.
    Roder C, Bisdas S, Ebner FH, Honegger J, Naegele T, Ernemann U, Tatagiba M (2014) Maximizing the extent of resection and survival benefit of patients in glioblastoma surgery: high-field iMRI versus conventional and 5-ALA-assisted surgery. Eur J Surg Oncol 40:297–304CrossRefPubMedGoogle Scholar
  22. 22.
    Swanson KI, Clark PA, Zhang RR, Kandela IK, Farhoud M, Weichert JP, Kuo JS (2015) Fluorescent cancer-selective alkylphosphocholine analogs for intraoperative glioma detection. Neurosurgery 76:115–123 (discussion 123–114)CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Eberlin LS, Norton I, Orringer D, Dunn IF, Liu X, Ide JL, Jarmusch AK, Ligon KL, Jolesz FA, Golby AJ, Santagata S, Agar NY, Cooks RG (2013) Ambient mass spectrometry for the intraoperative molecular diagnosis of human brain tumors. Proc Natl Acad Sci USA 110:1611–1616CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Gholami B, Agar NY, Jolesz FA, Haddad WM, Tannenbaum AR (2011) A compressive sensing approach for glioma margin delineation using mass spectrometry. Conf Proc IEEE Eng Med Biol Soc 2011:5682–5685PubMedPubMedCentralGoogle Scholar
  25. 25.
    Shankar GM, Francis JM, Rinne ML, Ramkissoon SH, Huang FW, Venteicher AS, Akama-Garren EH, Kang YJ, Lelic N, Kim JC, Brown LE, Charbonneau SK, Golby AJ, Sekhar Pedamallu C, Hoang MP, Sullivan RJ, Cherniack AD, Garraway LA, Stemmer-Rachamimov A, Reardon DA, Wen PY, Brastianos PK, Curry WT, Barker FG, Hahn WC, Nahed BV, Ligon KL, Louis DN, Cahill DP, Meyerson M (2015) Rapid intraoperative molecular characterization of glioma. JAMA Oncol 1:662–667CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Kanamori M, Kikuchi A, Watanabe M, Shibahara I, Saito R, Yamashita Y, Sonoda Y, Kumabe T, Kure S, Tominaga T (2014) Rapid and sensitive intraoperative detection of mutations in the isocitrate dehydrogenase 1 and 2 genes during surgery for glioma. J Neurosurg 120:1288–1297CrossRefPubMedGoogle Scholar
  27. 27.
    Kim CS, Jung S, Jung TY, Jang WY, Sun HS, Ryu HH (2011) Characterization of invading glioma cells using molecular analysis of leading-edge tissue. J Korean Neurosurg Soc 50:157–165CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Alexiou GA, Vartholomatos G, Goussia A, Batistatou A, Tsamis K, Voulgaris S, Kyritsis AP (2015) Fast cell cycle analysis for intraoperative characterization of brain tumor margins and malignancy. J Clin Neurosci 22:129–132CrossRefPubMedGoogle Scholar
  29. 29.
    Salcman M, Samaras GM (1981) Hyperthermia for brain tumors: biophysical rationale. Neurosurgery 9:327–335CrossRefPubMedGoogle Scholar
  30. 30.
    Sugiyama K, Sakai T, Fujishima I, Ryu H, Uemura K, Yokoyama T (1990) Stereotactic interstitial laser-hyperthermia using Nd-YAG laser. Stereotact Funct Neurosurg 54–55:501–505CrossRefPubMedGoogle Scholar
  31. 31.
    Ascher PW, Justich E, Schröttner O (1991) A new surgical but less invasive treatment of central brain tumours Preliminary report. Acta Neurochir Suppl (Wien) 52: 78–80CrossRefGoogle Scholar
  32. 32.
    Patel P, Patel NV, Danish SF (2016) Intracranial MR-guided laser-induced thermal therapy: single-center experience with the Visualase thermal therapy system. J Neurosurg 1:1–8Google Scholar
  33. 33.
    Kane JR, Miska J, Young JS, Kanojia D, Kim JW, Lesniak MS (2015) Sui generis: gene therapy and delivery systems for the treatment of glioblastoma. Neuro Oncol 17(Suppl 2):ii24–ii36CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Fischer U, Steffens S, Frank S, Rainov NG, Schulze-Osthoff K, Kramm CM (2005) Mechanisms of thymidine kinase/ganciclovir and cytosine deaminase/5-fluorocytosine suicide gene therapy-induced cell death in glioma cells. Oncogene 24:1231–1243CrossRefPubMedGoogle Scholar
  35. 35.
    Kaufmann JK, Chiocca EA (2014) Glioma virus therapies between bench and bedside. Neuro Oncol 16:334–351CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Huang TT, Hlavaty J, Ostertag D, Espinoza FL, Martin B, Petznek H, Rodriguez-Aguirre M, Ibañez CE, Kasahara N, Gunzburg W, Gruber HE, Pertschuk D, Jolly DJ, Robbins JM (2013) Toca 511 gene transfer and 5-fluorocytosine in combination with temozolomide demonstrates synergistic therapeutic efficacy in a temozolomide-sensitive glioblastoma model. Cancer Gene Ther 20:544–551CrossRefPubMedGoogle Scholar
  37. 37.
    Forsyth P, Roldán G, George D, Wallace C, Palmer CA, Morris D, Cairncross G, Matthews MV, Markert J, Gillespie Y, Coffey M, Thompson B, Hamilton M (2008) A phase I trial of intratumoral administration of reovirus in patients with histologically confirmed recurrent malignant gliomas. Mol Ther 16:627–632CrossRefPubMedGoogle Scholar
  38. 38.
    Todo T, Martuza RL, Rabkin SD, Johnson PA (2001) Oncolytic herpes simplex virus vector with enhanced MHC class I presentation and tumor cell killing. Proc Natl Acad Sci USA 98:6396–6401CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Tyler MA, Ulasov IV, Sonabend AM, Nandi S, Han Y, Marler S, Roth J, Lesniak MS (2009) Neural stem cells target intracranial glioma to deliver an oncolytic adenovirus in vivo. Gene Ther 16:262–278CrossRefPubMedGoogle Scholar
  40. 40.
    Sonabend AM, Ulasov IV, Tyler MA, Rivera AA, Mathis JM, Lesniak MS (2008) Mesenchymal stem cells effectively deliver an oncolytic adenovirus to intracranial glioma. Stem Cells 26:831–841CrossRefPubMedGoogle Scholar
  41. 41.
    Choi SA, Hwang SK, Wang KC, Cho BK, Phi JH, Lee JY, Jung HW, Lee DH, Kim SK (2011) Therapeutic efficacy and safety of TRAIL-producing human adipose tissue-derived mesenchymal stem cells against experimental brainstem glioma. Neuro Oncol 13:61–69CrossRefPubMedGoogle Scholar
  42. 42.
    Choi SA, Lee YE, Kwak PA, Lee JY, Kim SS, Lee SJ, Phi JH, Wang KC, Song J, Song SH, Joo KM, Kim SK (2015) Clinically applicable human adipose tissue-derived mesenchymal stem cells delivering therapeutic genes to brainstem gliomas. Cancer Gene Ther 22:302–311CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Robert C. Rennert
    • 1
  • David R. Santiago-Dieppa
    • 1
  • Javier Figueroa
    • 1
  • Nader Sanai
    • 2
  • Bob S. Carter
    • 1
    Email author
  1. 1.Department of NeurosurgeryUniversity of California, San DiegoSan DiegoUSA
  2. 2.Division of Neurosurgery, Barrow Neurological InstituteSt. Joseph’s Hospital and Medical CenterPhoenixUSA

Personalised recommendations