Advertisement

Journal of Neuro-Oncology

, Volume 128, Issue 3, pp 395–404 | Cite as

Shift of microRNA profile upon orthotopic xenografting of glioblastoma spheroid cultures

  • Bo HalleEmail author
  • Mads Thomassen
  • Ranga Venkatesan
  • Vivek Kaimal
  • Eric G. Marcusson
  • Sune Munthe
  • Mia D. Sørensen
  • Charlotte Aaberg-Jessen
  • Stine S. Jensen
  • Morten Meyer
  • Torben A. Kruse
  • Helle Christiansen
  • Steffen Schmidt
  • Jan Mollenhauer
  • Mette K. Schulz
  • Claus Andersen
  • Bjarne W. Kristensen
Laboratory Investigation

Abstract

Glioblastomas always recur despite surgery, radiotherapy and chemotherapy. A key player in the therapeutic resistance may be immature tumor cells with stem-like properties (TSCs) escaping conventional treatment. A group of promising molecular targets are microRNAs (miRs). miRs are small non-coding RNAs exerting post-transcriptional regulation of gene expression. In this study we aimed to identify over-expressed TSC-related miRs potentially amenable for therapeutic targeting. We used non-differentiated glioblastoma spheroid cultures (GSCs) containing TSCs and compared these to xenografts using a NanoString nCounter platform. This revealed 19 over-expressed miRs in the non-differentiated GSCs. Additionally, non-differentiated GSCs were compared to neural stem cells (NSCs) using a microarray platform. This revealed four significantly over-expressed miRs in the non-differentiated GSCs in comparison to the NSCs. The three most over-expressed miRs in the non-differentiated GSCs compared to xenografts were miR-126, -137 and -128. KEGG pathway analysis suggested the main biological function of these over-expressed miRs to be cell-cycle arrest and diminished proliferation. To functionally validate the profiling results suggesting association of these miRs with stem-like properties, experimental over-expression of miR-128 was performed. A consecutive limiting dilution assay confirmed a significantly elevated spheroid formation in the miR-128 over-expressing cells. This may provide potential therapeutic targets for anti-miRs to identify novel treatment options for GBM patients.

Keywords

MicroRNA Glioblastoma Tumor stem cell Cancer stem cell 

Notes

Acknowledgments

This work was supported by Grants from Odense University Hospital, Region of Southern Denmark, Familien Erichsens Foundation, Svend Helge Arvid Schrøder og Hustru Ketty Larsen Foundation, by the Lundbeckfonden Grant for the NanoCAN Center of Excellence in Nanomedicine, the DAWN-2020 Project financed by Rektorspuljen SDU2020 program, and the MIO Project of the OUH Frontlinjepuljen. We are grateful for the excellent technical assistance from Helle Wohlleben and Tanja D. Højgaard, Department of Pathology, Odense University Hospital.

Compliance with ethical standards

The experiments in this study complied with the laws of the countries in which they were performed.

Conflict of interest

Eric Marcusson was Senior Director of Oncology, Ranga Venkatesan was Senior Scientist and Vivek Kaimal is Scientist, Bioinformatics at Regulus Therapeutics. All other authors declare no conflict of interest.

Supplementary material

11060_2016_2125_MOESM1_ESM.docx (7.4 mb)
Supplementary material 1 (DOCX 7552 kb)
11060_2016_2125_MOESM2_ESM.docx (2.4 mb)
Supplementary material 2 (DOCX 2476 kb)
11060_2016_2125_MOESM3_ESM.docx (62 kb)
Supplementary material 3 (DOCX 61 kb)

References

  1. 1.
    Louis DN, Ohgaki H, Wiestler OD, Cavenee WK (2007) WHO classification of tumours of the central nervous system. IARC, LyonGoogle Scholar
  2. 2.
    Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, Curschmann J, Janzer RC, Ludwin SK, Gorlia T, Allgeier A, Lacombe D, Cairncross JG, Eisenhauer E, Mirimanoff RO (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996CrossRefPubMedGoogle Scholar
  3. 3.
    Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, Dirks PB (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res 63:5821–5828PubMedGoogle Scholar
  4. 4.
    Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB, Dewhirst MW, Bigner DD, Rich JN (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444:756–760CrossRefPubMedGoogle Scholar
  5. 5.
    Liu G, Yuan X, Zeng Z, Tunici P, Ng H, Abdulkadir IR, Lu L, Irvin D, Black KL, Yu JS (2006) Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma. Mol Cancer 5:67CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297CrossRefPubMedGoogle Scholar
  7. 7.
    Guo H, Ingolia NT, Weissman JS, Bartel DP (2010) Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 466:835–840CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Moller HG, Rasmussen AP, Andersen HH, Johnsen KB, Henriksen M, Duroux M (2013) A systematic review of microRNA in glioblastoma multiforme: micro-modulators in the mesenchymal mode of migration and invasion. Mol Neurobiol 47:131–144CrossRefPubMedGoogle Scholar
  9. 9.
    Gabriely G, Yi M, Narayan RS, Niers JM, Wurdinger T, Imitola J, Ligon KL, Kesari S, Esau C, Stephens RM, Tannous BA, Krichevsky AM (2011) Human glioma growth is controlled by MicroRNA-10b. Cancer Res 71:3563–3572CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Guessous F, Alvarado-Velez M, Marcinkiewicz L, Zhang Y, Kim J, Heister S, Kefas B, Godlewski J, Schiff D, Purow B, Abounader R (2013) Oncogenic effects of miR-10b in glioblastoma stem cells. J Neurooncol 112:153–163Google Scholar
  11. 11.
    Lin J, Teo S, Lam DH, Jeyaseelan K, Wang S (2012) MicroRNA-10b pleiotropically regulates invasion, angiogenicity and apoptosis of tumor cells resembling mesenchymal subtype of glioblastoma multiforme. Cell Death Dis 3:e398CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Zhou X, Ren Y, Moore L, Mei M, You Y, Xu P, Wang B, Wang G, Jia Z, Pu P, Zhang W, Kang C (2010) Downregulation of miR-21 inhibits EGFR pathway and suppresses the growth of human glioblastoma cells independent of PTEN status. Lab Invest 90:144–155CrossRefPubMedGoogle Scholar
  13. 13.
    Gal H, Pandi G, Kanner AA, Ram Z, Lithwick-Yanai G, Amariglio N, Rechavi G, Givol D (2008) MIR-451 and imatinib mesylate inhibit tumor growth of glioblastoma stem cells. Biochem Biophys Res Commun 376:86–90CrossRefPubMedGoogle Scholar
  14. 14.
    Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, Cusimano MD, Dirks PB (2004) Identification of human brain tumour initiating cells. Nature 432:396–401CrossRefPubMedGoogle Scholar
  15. 15.
    Clement V, Dutoit V, Marino D, Dietrich PY, Radovanovic I (2009) Limits of CD133 as a marker of glioma self-renewing cells. Int J Cancer 125:244–248CrossRefPubMedGoogle Scholar
  16. 16.
    Wang J, Sakariassen PO, Tsinkalovsky O, Immervoll H, Boe SO, Svendsen A, Prestegarden L, Rosland G, Thorsen F, Stuhr L, Molven A, Bjerkvig R, Enger PO (2008) CD133 negative glioma cells form tumors in nude rats and give rise to CD133 positive cells. Int J Cancer 122:761–768CrossRefPubMedGoogle Scholar
  17. 17.
    Li A, Walling J, Kotliarov Y, Center A, Steed ME, Ahn SJ, Rosenblum M, Mikkelsen T, Zenklusen JC, Fine HA (2008) Genomic changes and gene expression profiles reveal that established glioma cell lines are poorly representative of primary human gliomas. Mol Cancer Res 6:21–30CrossRefPubMedGoogle Scholar
  18. 18.
    Lang MF, Yang S, Zhao C, Sun G, Murai K, Wu X, Wang J, Gao H, Brown CE, Liu X, Zhou J, Peng L, Rossi JJ, Shi Y (2012) Genome-wide profiling identified a set of miRNAs that are differentially expressed in glioblastoma stem cells and normal neural stem cells. PLoS ONE 7:e36248CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Chan XH, Nama S, Gopal F, Rizk P, Ramasamy S, Sundaram G, Ow GS, Ivshina AV, Tanavde V, Haybaeck J, Kuznetsov V, Sampath P (2012) Targeting glioma stem cells by functional inhibition of a prosurvival oncomiR-138 in malignant gliomas. Cell Rep 2:591–602CrossRefPubMedGoogle Scholar
  20. 20.
    Friedmann-Morvinski D, Bushong EA, Ke E, Soda Y, Marumoto T, Singer O, Ellisman MH, Verma IM (2012) Dedifferentiation of neurons and astrocytes by oncogenes can induce gliomas in mice. Science 338:1080–1084CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Lee J, Kotliarova S, Kotliarov Y, Li A, Su Q, Donin NM, Pastorino S, Purow BW, Christopher N, Zhang W, Park JK, Fine HA (2006) Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. Cancer Cell 9:391–403CrossRefPubMedGoogle Scholar
  22. 22.
    Jensen SS, Aaberg-Jessen C, Andersen C, Schroder HD, Kristensen BW (2013) Glioma spheroids obtained via ultrasonic aspiration are viable and express stem cell markers: a new tissue resource for glioma research. Neurosurgery 73:868–886CrossRefPubMedGoogle Scholar
  23. 23.
    Villa A, Snyder EY, Vescovi A, Martinez-Serrano A (2000) Establishment and properties of a growth factor-dependent, perpetual neural stem cell line from the human CNS. Exp Neurol 161:67–84CrossRefPubMedGoogle Scholar
  24. 24.
    Krabbe C, Courtois E, Jensen P, Jorgensen JR, Zimmer J, Martinez-Serrano A, Meyer M (2009) Enhanced dopaminergic differentiation of human neural stem cells by synergistic effect of Bcl-xL and reduced oxygen tension. J Neurochem 110:1908–1920CrossRefPubMedGoogle Scholar
  25. 25.
    Donato R, Miljan EA, Hines SJ, Aouabdi S, Pollock K, Patel S, Edwards FA, Sinden JD (2007) Differential development of neuronal physiological responsiveness in two human neural stem cell lines. BMC Neurosci 8:36CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Halle B, Marcusson EG, Aaberg-Jessen C, Jensen SS, Meyer M, Schulz MK, Andersen C, Kristensen BW (2016) Convection-enhanced delivery of an anti-miR is well-tolerated, preserves anti-miR stability and causes efficient target de-repression: a proof of concept. J Neurooncol 126:47–55Google Scholar
  27. 27.
    Geiss GK, Bumgarner RE, Birditt B, Dahl T, Dowidar N, Dunaway DL, Fell HP, Ferree S, George RD, Grogan T, James JJ, Maysuria M, Mitton JD, Oliveri P, Osborn JL, Peng T, Ratcliffe AL, Webster PJ, Davidson EH, Hood L, Dimitrov K (2008) Direct multiplexed measurement of gene expression with color-coded probe pairs. Nat Biotechnol 26:317–325CrossRefPubMedGoogle Scholar
  28. 28.
    TCGA Data Portal. https://tcga-data.nci.nih.gov/tcga/. Accessed 2 Dec 2014
  29. 29.
  30. 30.
    da Huang W, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:44–57CrossRefGoogle Scholar
  31. 31.
    Gossen M, Freundlieb S, Bender G, Muller G, Hillen W, Bujard H (1995) Transcriptional activation by tetracyclines in mammalian cells. Science (New York, NY) 268:1766–1769CrossRefGoogle Scholar
  32. 32.
    Hu Y, Smyth GKELDA (2009) Extreme limiting dilution analysis for comparing depleted and enriched populations in stem cell and other assays. J Immunol Methods 347:70–78CrossRefPubMedGoogle Scholar
  33. 33.
    Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120:15–20CrossRefPubMedGoogle Scholar
  34. 34.
    Bardwell AJ, Flatauer LJ, Matsukuma K, Thorner J, Bardwell L (2001) A conserved docking site in MEKs mediates high-affinity binding to MAP kinases and cooperates with a scaffold protein to enhance signal transmission. J Biol Chem 276:10374–10386CrossRefPubMedGoogle Scholar
  35. 35.
    Wu L, Timmers C, Maiti B, Saavedra HI, Sang L, Chong GT, Nuckolls F, Giangrande P, Wright FA, Field SJ, Greenberg ME, Orkin S, Nevins JR, Robinson ML, Leone G (2001) The E2F1-3 transcription factors are essential for cellular proliferation. Nature 414:457–462CrossRefPubMedGoogle Scholar
  36. 36.
    Godlewski J, Nowicki MO, Bronisz A, Williams S, Otsuki A, Nuovo G, Raychaudhury A, Newton HB, Chiocca EA, Lawler S (2008) Targeting of the Bmi-1 oncogene/stem cell renewal factor by microRNA-128 inhibits glioma proliferation and self-renewal. Cancer Res 68:9125–9130CrossRefPubMedGoogle Scholar
  37. 37.
    Altaner C (2008) Glioblastoma and stem cells. Neoplasma 55:369–374PubMedGoogle Scholar
  38. 38.
    Peruzzi P, Bronisz A, Nowicki MO, Wang Y, Ogawa D, Price R, Nakano I, Kwon CH, Hayes J, Lawler SE, Ostrowski MC, Chiocca EA, Godlewski J (2013) MicroRNA-128 coordinately targets polycomb repressor complexes in glioma stem cells. Neuro Oncol 15:1212–1224CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Papagiannakopoulos T, Friedmann-Morvinski D, Neveu P, Dugas JC, Gill RM, Huillard E, Liu C, Zong H, Rowitch DH, Barres BA, Verma IM, Kosik KS (2012) Pro-neural miR-128 is a glioma tumor suppressor that targets mitogenic kinases. Oncogene 31:1884–1895CrossRefPubMedGoogle Scholar
  40. 40.
    Pierson J, Hostager B, Fan R, Vibhakar R (2008) Regulation of cyclin dependent kinase 6 by microRNA 124 in medulloblastoma. J Neurooncol 90:1–7CrossRefPubMedGoogle Scholar
  41. 41.
    Silber J, Lim DA, Petritsch C, Persson AI, Maunakea AK, Yu M, Vandenberg SR, Ginzinger DG, James CD, Costello JF, Bergers G, Weiss WA, Alvarez-Buylla A, Hodgson JG (2008) miR-124 and miR-137 inhibit proliferation of glioblastoma multiforme cells and induce differentiation of brain tumor stem cells. BMC Med 6:14CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Tamim S, Vo DT, Uren PJ, Qiao M, Bindewald E, Kasprzak WK, Shapiro BA, Nakaya HI, Burns SC, Araujo PR, Nakano I, Radek AJ, Kuersten S, Smith AD, Penalva LO (2014) Genomic analyses reveal broad impact of miR-137 on genes associated with malignant transformation and neuronal differentiation in glioblastoma cells. PLoS ONE 9:e85591CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Guo C, Sah JF, Beard L, Willson JK, Markowitz SD, Guda K (2008) The noncoding RNA, miR-126, suppresses the growth of neoplastic cells by targeting phosphatidylinositol 3-kinase signaling and is frequently lost in colon cancers. Genes Chromosomes Cancer 47:939–946CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Vivanco I, Sawyers CL (2002) The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat Rev Cancer 2:489–501CrossRefPubMedGoogle Scholar
  45. 45.
    Lechman ER, Gentner B, van Galen P, Giustacchini A, Saini M, Boccalatte FE, Hiramatsu H, Restuccia U, Bachi A, Voisin V, Bader GD, Dick JE, Naldini L (2012) Attenuation of miR-126 activity expands HSC in vivo without exhaustion. Cell Stem Cell 11:799–811CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    de Leeuw DC, Denkers F, Olthof M, Rutten A, Pouwels W, Schuurhuis GJ, Ossenkoppele G, Smit L (2014) Attenuation of microRNA-126 expression that drives CD34+ 38- stem/progenitor cells in acute myeloid leukemia leads to tumor eradication. Cancer Res 74:2094–2105Google Scholar
  47. 47.
    Bier A, Giladi N, Kronfeld N, Lee HK, Cazacu S, Finniss S, Xiang C, Poisson L, de Carvalho AC, Slavin S, Jacoby E, Yalon M, Toren A, Mikkelsen T, Brodie C (2013) MicroRNA-137 is downregulated in glioblastoma and inhibits the stemness of glioma stem cells by targeting RTVP-1. Oncotarget 4:665–676CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Aldaz B, Sagardoy A, Nogueira L, Guruceaga E, Grande L, Huse JT, Aznar MA, Diez-Valle R, Tejada-Solis S, Alonso MM, Fernandez-Luna JL, Martinez-Climent JA, Malumbres R (2013) Involvement of miRNAs in the differentiation of human glioblastoma multiforme stem-like cells. PLoS ONE 8:e77098CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Floyd DH, Zhang Y, Dey BK, Kefas B, Breit H, Marks K, Dutta A, Herold-Mende C, Synowitz M, Glass R, Abounader R, Purow BW (2014) Novel anti-apoptotic microRNAs 582-5p and 363 promote human glioblastoma stem cell survival via direct inhibition of caspase 3, caspase 9, and Bim. PLoS ONE 9:e96239CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Bo Halle
    • 1
    • 2
    • 3
    Email author
  • Mads Thomassen
    • 3
    • 4
  • Ranga Venkatesan
    • 5
  • Vivek Kaimal
    • 5
  • Eric G. Marcusson
    • 5
  • Sune Munthe
    • 1
    • 2
    • 3
  • Mia D. Sørensen
    • 1
    • 3
  • Charlotte Aaberg-Jessen
    • 6
  • Stine S. Jensen
    • 1
    • 3
  • Morten Meyer
    • 7
  • Torben A. Kruse
    • 3
    • 4
  • Helle Christiansen
    • 8
  • Steffen Schmidt
    • 8
  • Jan Mollenhauer
    • 8
  • Mette K. Schulz
    • 2
    • 3
  • Claus Andersen
    • 2
    • 3
  • Bjarne W. Kristensen
    • 1
    • 3
  1. 1.Department of PathologyOdense University HospitalOdense CDenmark
  2. 2.Department of NeurosurgeryOdense University HospitalOdense CDenmark
  3. 3.Institute of Clinical ResearchUniversity of Southern DenmarkOdense CDenmark
  4. 4.Department of Clinical GeneticsOdense University HospitalOdense CDenmark
  5. 5.Regulus TherapeuticsSan DiegoUSA
  6. 6.Department of Nuclear MedicineOdense University HospitalOdense CDenmark
  7. 7.Department of Neurobiology Research, Institute of Molecular MedicineUniversity of Southern DenmarkOdense CDenmark
  8. 8.Faculty of Health Sciences, Lundbeckfonden Center of Excellence NanoCAN and Molecular Oncology, Institute of Molecular MedicineUniversity of Southern DenmarkOdense CDenmark

Personalised recommendations