Journal of Neuro-Oncology

, Volume 128, Issue 1, pp 93–100 | Cite as

Tumor DNA in cerebral spinal fluid reflects clinical course in a patient with melanoma leptomeningeal brain metastases

  • Yingmei Li
  • Wenying Pan
  • Ian D. Connolly
  • Sunil Reddy
  • Seema Nagpal
  • Stephen Quake
  • Melanie Hayden Gephart
Clinical Study


Cerebral spinal fluid (CSF) from brain tumor patients contains tumor cellular and cell-free DNA (cfDNA), which provides a less-invasive and routinely accessible method to obtain tumor genomic information. In this report, we used droplet digital PCR to test mutant tumor DNA in CSF of a patient to monitor the treatment response of metastatic melanoma leptomeningeal disease (LMD). The primary melanoma was known to have a BRAFV600E mutation, and the patient was treated with whole brain radiotherapy and BRAF inhibitors. We collected 9 CSF samples over 6 months. The mutant cfDNA fraction gradually decreased from 53 % (time of diagnosis) to 0 (time of symptom alleviation) over the first 6 time points. Three months after clinical improvement, the patient returned with severe symptoms and the mutant cfDNA was again detected in CSF at high levels. The mutant DNA fraction corresponded well with the patient’s clinical response. We used whole exome sequencing to examine the mutation profiles of the LMD tumor DNA in CSF before therapeutic response and after disease relapse, and discovered a canonical cancer mutation PTENR130* at both time points. The cellular and cfDNA revealed similar mutation profiles, suggesting cfDNA is representative of LMD cells. This study demonstrates the potential of using cellular or cfDNA in CSF to monitor treatment response for LMD.


Brain Tumor Cell-free DNA Cerebral spinal fluid Droplet digital PCR Exome sequencing Leptomeningeal disease Melanoma 

Supplementary material

11060_2016_2081_MOESM1_ESM.docx (2.5 mb)
Supplementary material 1 (DOCX 2527 kb)
11060_2016_2081_MOESM2_ESM.xlsx (73 kb)
Supplementary material 2 (XLSX 73 kb)


  1. 1.
    Chamberlain MC (2010) Leptomeningeal metastasis. Curr Opin Oncol 22(6):627–635CrossRefPubMedGoogle Scholar
  2. 2.
    Weller M (2003) Leptomeningeal metastasis. In: Brant T (ed) Neurological disorders: course and treatment, 2nd edn. Academic Press, Amsterdam, pp 897–909CrossRefGoogle Scholar
  3. 3.
    Nagpal S, Riess J, Wakelee H (2012) Treatment of leptomeningeal spread of NSCLC: a continuing challenge. Curr Treat Options Oncol 13(4):491–504CrossRefPubMedGoogle Scholar
  4. 4.
    Wasserstrom WR, Glass JP, Posner JB (1982) Diagnosis and treatment of leptomeningeal metastases from solid tumors: experience with 90 patients. Cancer 49(4):759–772CrossRefPubMedGoogle Scholar
  5. 5.
    Pan W, Gu W, Nagpal S, Gephart MH, Quake SR (2015) Brain tumor mutations detected in cerebral spinal fluid. Clin Chem 61(3):514–522CrossRefPubMedGoogle Scholar
  6. 6.
    Bettegowda C, Sausen M, Leary RJ et al (2014) Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci Transl Med 6(224):224ra224CrossRefGoogle Scholar
  7. 7.
    Jang NE, Baek SK, Jeong Jh et al (2013) Early detection of BCR-ABL fusion gene of cerebrospinal fluid (CSF) by RT-PCR in relapsed acute lymphoblastic leukemia with philadelphia chromosome. Lab Med 43(2):e33–e37Google Scholar
  8. 8.
    Swinkels DW, de Kok JB, Hanselaar A, Lamers K, Boerman RH (2000) Early detection of leptomeningeal metastasis by PCR examination of tumor-derived K-ras DNA in cerebrospinal fluid. Clin Chem 46(1):132–133PubMedGoogle Scholar
  9. 9.
    Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30(15):2114–2120CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25(14):1754–1760CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    McKenna A, Hanna M, Banks E et al (2010) The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20(9):1297–1303CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Cibulskis K, Lawrence MS, Carter SL et al (2013) Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nat Biotechnol 31(3):213–219CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Wang K, Li M, Hakonarson H (2010) ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res 38(16):e164CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    De Mattos-Arruda L, Cortes J, Santarpia L et al (2013) Circulating tumour cells and cell-free DNA as tools for managing breast cancer. Nat Rev Clin Oncol 10(7):377–389CrossRefPubMedGoogle Scholar
  15. 15.
    Kamat AA, Baldwin M, Urbauer D et al (2010) Plasma cell-free DNA in ovarian cancer: an independent prognostic biomarker. Cancer 116(8):1918–1925CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Papadopoulou E, Davilas E, Sotiriou V et al (2006) Cell-free DNA and RNA in plasma as a new molecular marker for prostate and breast cancer. Ann N Y Acad Sci 1075:235–243CrossRefPubMedGoogle Scholar
  17. 17.
    Pathak AK, Bhutani M, Kumar S, Mohan A, Guleria R (2006) Circulating cell-free DNA in plasma/serum of lung cancer patients as a potential screening and prognostic tool. Clin Chem 52(10):1833–1842PubMedGoogle Scholar
  18. 18.
    Wang Y, Springer S, Zhang M et al (2015) Detection of tumor-derived DNA in cerebrospinal fluid of patients with primary tumors of the brain and spinal cord. Proc Natl Acad Sci 112(31):9704–9709CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Grommes C, Oxnard GR, Kris MG et al (2011) “Pulsatile” high-dose weekly erlotinib for CNS metastases from EGFR mutant non-small cell lung cancer. Neuro Oncol 13(12):1364–1369CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Schulze B, Meissner M, Wolter M, Rodel C, Weiss C (2014) Unusual acute and delayed skin reactions during and after whole-brain radiotherapy in combination with the BRAF inhibitor vemurafenib. Two case reports. Strahlenther Onkol 190(2):229–232CrossRefPubMedGoogle Scholar
  21. 21.
    Chapman PB, Hauschild A, Robert C et al (2011) Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med 364(26):2507–2516CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Falchook GS, Long GV, Kurzrock R et al (2012) Dabrafenib in patients with melanoma, untreated brain metastases, and other solid tumours: a phase 1 dose-escalation trial. Lancet 379(9829):1893–1901CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Fennira F, Pages C, Schneider P et al (2014) Vemurafenib in the French temporary authorization for use metastatic melanoma cohort: a single-centre trial. Melanoma Res 24(1):75–82CrossRefPubMedGoogle Scholar
  24. 24.
    Sosman JA, Kim KB, Schuchter L et al (2012) Survival in BRAF V600-mutant advanced melanoma treated with vemurafenib. N Engl J Med 366(8):707–714CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Wilgenhof S, Neyns B (2014) Complete cytologic remission of V600E BRAF-mutant melanoma-associated leptomeningeal carcinomatosis upon treatment with dabrafenib. J Clin Oncol 33:e109CrossRefPubMedGoogle Scholar
  26. 26.
    Tsao H, Goel V, Wu H, Yang G, Haluska FG (2004) Genetic interaction between NRAS and BRAF mutations and PTEN/MMAC1 inactivation in melanoma. J Invest Dermatol 122(2):337–341CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Dankort D, Curley DP, Cartlidge RA et al (2009) Braf(V600E) cooperates with Pten loss to induce metastatic melanoma. Nat Genet 41(5):544–552CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Paraiso KH, Xiang Y, Rebecca VW et al (2011) PTEN loss confers BRAF inhibitor resistance to melanoma cells through the suppression of BIM expression. Cancer Res 71(7):2750–2760CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Naji L, Pacholsky D, Aspenstrom P (2011) ARHGAP30 is a Wrch-1-interacting protein involved in actin dynamics and cell adhesion. Biochem Biophys Res Commun 409(1):96–102CrossRefPubMedGoogle Scholar
  30. 30.
    Yang Y, Cochran DA, Gargano MD et al (2011) Regulation of flagellar motility by the conserved flagellar protein CG34110/Ccdc135/FAP50. Mol Biol Cell 22(7):976–987CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Strauss U, Brauer AU (2013) Current views on regulation and function of plasticity-related genes (PRGs/LPPRs) in the brain. Biochim Biophys Acta 1831(1):133–138CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Yingmei Li
    • 1
  • Wenying Pan
    • 3
  • Ian D. Connolly
    • 1
  • Sunil Reddy
    • 4
  • Seema Nagpal
    • 5
  • Stephen Quake
    • 3
    • 6
  • Melanie Hayden Gephart
    • 2
  1. 1.Department of NeurosurgeryStanford UniversityStanfordUSA
  2. 2.Department of NeurosurgeryStanford UniversityStanfordUSA
  3. 3.Department of Bioengineering, James H. Clark CenterStanford UniversityStanfordUSA
  4. 4.Department of Medicine, Cancer CenterStanford UniversityStanfordUSA
  5. 5.Department of Neurology, Cancer CenterStanford UniversityStanfordUSA
  6. 6.Howard Hughes Medical InstituteChevy ChaseUSA

Personalised recommendations