Advertisement

Journal of Neuro-Oncology

, Volume 127, Issue 3, pp 427–434 | Cite as

The challenges associated with molecular targeted therapies for glioblastoma

  • Toni Rose Jue
  • Kerrie L. McDonaldEmail author
Topic Review

Abstract

Glioblastoma (GBM) is the most aggressive malignant brain tumor in adults. Improvements in the treatment of GBM have remained static since the advent of the standard therapy which includes radiation with concurrent and adjuvant temozolomide treatment. Developing treatment and diagnostic or companion biomarker combinations is transforming the way we treat numerous cancers. However, can this emerging paradigm be also effective for GBM? Can GBM be treated the same way as other cancers? Here we review the challenges for a personalized molecular targeted therapeutic approach in GBM. The specific challenges for establishing a personalized molecular targeted medicine program for GBM patients include overcoming the blood brain barrier, unravelling the intra- and inter-heterogeneity that exists and the importance of developing more relevant animal models that recapitulate a patient’s GBM tumor.

Keywords

Personalized medicine Glioblastoma Biomarkers Chemotherapy 

Notes

Compliance with ethical standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Gilbert MR (2011) Recurrent glioblastoma: a fresh look at current therapies and emerging novel approaches. Semin Oncol 38(Suppl 4):S21–S33. doi: 10.1053/j.seminoncol.2011.09.008 CrossRefPubMedGoogle Scholar
  2. 2.
    Biankin AV, Chanock SJ (2011) The road ahead: less travelled and more arduous than initially envisioned. Hum Genet 130(1):1–2. doi: 10.1007/s00439-011-1046-1 CrossRefPubMedGoogle Scholar
  3. 3.
    Harris T (2010) Gene and drug matrix for personalized cancer therapy. Nat Rev Drug Discov 9(8):660. doi: 10.1038/nrd3181-c1 CrossRefPubMedGoogle Scholar
  4. 4.
    Schilsky RL (2010) Personalized medicine in oncology: the future is now. Nat Rev Drug Discov 9(5):363–366. doi: 10.1038/nrd3181 CrossRefPubMedGoogle Scholar
  5. 5.
    Nathanson KL (2010) Using genetics and genomics strategies to personalize therapy for cancer: focus on melanoma. Biochem Pharmacol 80(5):755–761. doi: 10.1016/j.bcp.2010.04.017 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. New Engl J Med 352(10):987–996. doi: 10.1056/NEJMoa043330 CrossRefPubMedGoogle Scholar
  7. 7.
    Jue TR, Hovey E, Davis S, Carleton O, McDonald KL (2014) Incorporation of biomarkers in phase II studies of recurrent glioblastoma. Tumor Biol. doi: 10.1007/s13277-014-2960-3 Google Scholar
  8. 8.
    Hegi ME, Diserens A-C, Gorlia T, Hamou M-F, de Tribolet N, Weller M et al (2005) MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 352(10):997–1003. doi: 10.1056/NEJMoa043331 CrossRefPubMedGoogle Scholar
  9. 9.
    Schuster J, Lai RK, Recht LD, Reardon DA, Paleologos NA, Groves MD et al (2015) A phase II, multicenter trial of rindopepimut (CDX-110) in newly diagnosed glioblastoma: the ACT III study. Neuro Oncology 17(6):854–861. doi: 10.1093/neuonc/nou348 CrossRefPubMedGoogle Scholar
  10. 10.
    McLendon R, Friedman A, Bigner D, Van Meir EG, Brat DJ, Mastrogianakis GM, Olson JJ, Mikkelsen T, Lehman N, Aldape K, Yung WA (2008) Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455(7216):1061–1068. doi: 10.1038/nature07385 CrossRefGoogle Scholar
  11. 11.
    Brennan CW, Verhaak RG, McKenna A, Campos B, Noushmehr H, Salama SR et al (2013) The somatic genomic landscape of glioblastoma. Cell 155(2):462–477. doi: 10.1016/j.cell.2013.09.034 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD et al (2010) Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17(1):98–110. doi: 10.1016/j.ccr.2009.12.020 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Noushmehr H, Weisenberger DJ, Diefes K, Phillips HS, Pujara K, Berman BP et al (2010) Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. Cancer Cell 17(5):510–522. doi: 10.1016/j.ccr.2010.03.017 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Cheng HB, Yue W, Xie C, Zhang RY, Hu SS, Wang Z (2013) IDH1 mutation is associated with improved overall survival in patients with glioblastoma: a meta-analysis. Tumor Biol 34(6):3555–3559. doi: 10.1007/s13277-013-0934-5 CrossRefGoogle Scholar
  15. 15.
    Kloosterhof NK, Bralten LB, Dubbink HJ, French PJ, van den Bent MJ (2011) Isocitrate dehydrogenase-1 mutations: a fundamentally new understanding of diffuse glioma? Lancet Oncol 12(1):83–91. doi: 10.1016/S1470-2045(10)70053-X CrossRefPubMedGoogle Scholar
  16. 16.
    Weller M, Felsberg J, Hartmann C, Berger H, Steinbach JP, Schramm J et al (2009) Molecular predictors of progression-free and overall survival in patients with newly diagnosed glioblastoma: a prospective translational study of the German glioma network. J Clin Oncol 27(34):5743–5750. doi: 10.1200/jco.2009.23.0805 CrossRefPubMedGoogle Scholar
  17. 17.
    Beiko J, Suki D, Hess KR, Fox BD, Cheung V, Cabral M et al (2014) IDH1 mutant malignant astrocytomas are more amenable to surgical resection and have a survival benefit associated with maximal surgical resection. Neuro Oncology 16(1):81–91. doi: 10.1093/neuonc/not159 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Alvarez RH, Valero V, Hortobagyi GN (2010) Emerging targeted therapies for breast cancer. J Clin Oncol 28(20):3366–3379. doi: 10.1200/jco.2009.25.4011 CrossRefPubMedGoogle Scholar
  19. 19.
    Perez EA, Romond EH, Suman VJ, Jeong JH, Sledge G, Geyer CE Jr et al (2014) Trastuzumab plus adjuvant chemotherapy for human epidermal growth factor receptor 2-positive breast cancer: planned joint analysis of overall survival from NSABP B-31 and NCCTG N9831. J Clin Oncol 32(33):3744–3752. doi: 10.1200/jco.2014.55.5730 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Sun Z, Wang Z, Liu X, Wang D (2015) New development of inhibitors targeting the PI3K/AKT/mTOR pathway in personalized treatment of non-small-cell lung cancer. Anticancer Drugs 26(1):1–14. doi: 10.1097/cad.0000000000000172 CrossRefPubMedGoogle Scholar
  21. 21.
    Janne PA, Engelman JA, Johnson BE (2005) Epidermal growth factor receptor mutations in non-small-cell lung cancer: implications for treatment and tumor biology. J Clin Oncol 23(14):3227–3234. doi: 10.1200/jco.2005.09.985 CrossRefPubMedGoogle Scholar
  22. 22.
    Prenen H, Tejpar S, Van Cutsem E (2010) New strategies for treatment of KRAS mutant metastatic colorectal cancer. Clin Cancer Res 16(11):2921–2926. doi: 10.1158/1078-0432.ccr-09-2029 CrossRefPubMedGoogle Scholar
  23. 23.
    Beale S, Dickson R, Bagust A, Blundell M, Dundar Y, Boland A et al (2013) Vemurafenib for the treatment of locally advanced or metastatic BRAF V600 mutation-positive malignant melanoma: a NICE single technology appraisal. Pharmacoeconomics 31(12):1121–1129. doi: 10.1007/s40273-013-0094-x CrossRefPubMedGoogle Scholar
  24. 24.
    Liu F, Hon GC, Villa GR, Turner KM, Ikegami S, Yang H et al (2015) EGFR mutation promotes glioblastoma through epigenome and transcription factor network remodeling. Mol Cell 60(2):307–318. doi: 10.1016/j.molcel.2015.09.002 CrossRefPubMedGoogle Scholar
  25. 25.
    Sampson JH, Heimberger AB, Archer GE, Aldape KD, Friedman AH, Friedman HS et al (2010) Immunologic escape after prolonged progression-free survival with epidermal growth factor receptor variant III peptide vaccination in patients with newly diagnosed glioblastoma. J Clin Oncol 28(31):4722–4729. doi: 10.1200/jco.2010.28.6963 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Peereboom DM, Shepard DR, Ahluwalia MS, Brewer CJ, Agarwal N, Stevens GH et al (2010) Phase II trial of erlotinib with temozolomide and radiation in patients with newly diagnosed glioblastoma multiforme. J Neurooncol 98(1):93–99. doi: 10.1007/s11060-009-0067-2 CrossRefPubMedGoogle Scholar
  27. 27.
    Raizer JJ, Giglio P, Hu J, Groves M, Merrell R, Conrad C et al (2015) A phase II study of bevacizumab and erlotinib after radiation and temozolomide in MGMT unmethylated GBM patients. J Neurooncol. doi: 10.1007/s11060-015-1958-z Google Scholar
  28. 28.
    van den Bent MJ, Brandes AA, Rampling R, Kouwenhoven MC, Kros JM, Carpentier AF et al (2009) Randomized phase II trial of erlotinib versus temozolomide or carmustine in recurrent glioblastoma: EORTC brain tumor group study 26034. J Clin Oncol 27(8):1268–1274. doi: 10.1200/jco.2008.17.5984 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Reardon DA, Desjardins A, Vredenburgh JJ, Gururangan S, Friedman AH, Herndon JE 2nd et al (2010) Phase 2 trial of erlotinib plus sirolimus in adults with recurrent glioblastoma. J Neurooncol 96(2):219–230. doi: 10.1007/s11060-009-9950-0 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Vivanco I, Robins HI, Rohle D, Campos C, Grommes C, Nghiemphu PL et al (2012) Differential sensitivity of glioma- versus lung cancer-specific EGFR mutations to EGFR kinase inhibitors. Cancer Discov 2(5):458–471. doi: 10.1158/2159-8290.cd-11-0284 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Ashby LS, Ryken TC (2006) Management of malignant glioma: steady progress with multimodal approaches. Neurosurg Focus 20(4):E3. doi: 10.3171/foc.2006.20.4.3 CrossRefPubMedGoogle Scholar
  32. 32.
    Patel AP, Tirosh I, Trombetta JJ, Shalek AK, Gillespie SM, Wakimoto H et al (2014) Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science 344(6190):1396–1401. doi: 10.1126/science.1254257 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    van Tellingen O, Yetkin-Arik B, de Gooijer M, Wesseling P, Wurdinger T, de Vries H (2015) Overcoming the blood–brain tumor barrier for effective glioblastoma treatment. Drug Resist Updates 19:1–12CrossRefGoogle Scholar
  34. 34.
    Hendricks BK, Cohen-Gadol AA, Miller JC (2015) Novel delivery methods bypassing the blood-brain and blood-tumor barriers. Neurosurg Focus 38(3):E10. doi: 10.3171/2015.1.FOCUS14767 CrossRefPubMedGoogle Scholar
  35. 35.
    Pitz MW, Desai A, Grossman SA, Blakeley JO (2011) Tissue concentration of systemically administered antineoplastic agents in human brain tumors. J Neurooncol 104(3):629–638. doi: 10.1007/s11060-011-0564-y CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Weidle UH, Niewohner J, Tiefenthaler G (2015) The blood-brain barrier challenge for the treatment of brain cancer, secondary brain metastases, and neurological diseases. Cancer Genom Proteom 12(4):167–177Google Scholar
  37. 37.
    Pardridge WM (2005) The blood-brain barrier: bottleneck in brain drug development. NeuroRx. 2(1):3–14. doi: 10.1602/neurorx.2.1.3 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Miller DS, Bauer B, Hartz AM (2008) Modulation of P-glycoprotein at the blood-brain barrier: opportunities to improve central nervous system pharmacotherapy. Pharmacol Rev 60(2):196–209. doi: 10.1124/pr.107.07109 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Mao H, Lebrun DG, Yang J, Zhu VF, Li M (2012) Deregulated signaling pathways in glioblastoma multiforme: molecular mechanisms and therapeutic targets. Cancer Invest 30(1):48–56. doi: 10.3109/07357907.2011.630050 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Sloan B, Scheinfeld NS (2008) Pazopanib, a VEGF receptor tyrosine kinase inhibitor for cancer therapy. Curr Opin Investig Drugs 9(12):1324–1335 (London, England: 2000) PubMedGoogle Scholar
  41. 41.
    Fellner S, Bauer B, Miller DS, Schaffrik M, Fankhanel M, Spruss T et al (2002) Transport of paclitaxel (Taxol) across the blood-brain barrier in vitro and in vivo. J Clin Investig 110(9):1309–1318. doi: 10.1172/jci15451 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Sardi I, Fantappie O, la Marca G, Giovannini MG, Iorio AL, da Ros M et al (2014) Delivery of doxorubicin across the blood brain barrier by ondansetron pretreatment: a study in vitro and in vivo. Cancer Lett. doi: 10.1016/j.canlet.2014.07.018 PubMedGoogle Scholar
  43. 43.
    Kraemer DF, Fortin D, Neuwelt EA (2002) Chemotherapeutic dose intensification for treatment of malignant brain tumors: recent developments and future directions. Curr Neurol Neurosci Rep 2(3):216–224CrossRefPubMedGoogle Scholar
  44. 44.
    Neuwelt EA, Howieson J, Frenkel EP, Specht HD, Weigel R, Buchan CG et al (1986) Therapeutic efficacy of multiagent chemotherapy with drug delivery enhancement by blood-brain barrier modification in glioblastoma. Neurosurgery 19(4):573–582CrossRefPubMedGoogle Scholar
  45. 45.
    Liu LB, Xue YX, Liu YH, Wang YB (2008) Bradykinin increases blood-tumor barrier permeability by down-regulating the expression levels of ZO-1, occludin, and claudin-5 and rearranging actin cytoskeleton. J Neurosci Res 86(5):1153–1168. doi: 10.1002/jnr.21558 CrossRefPubMedGoogle Scholar
  46. 46.
    Ting CY, Fan CH, Liu HL, Huang CY, Hsieh HY, Yen TC et al (2012) Concurrent blood-brain barrier opening and local drug delivery using drug-carrying microbubbles and focused ultrasound for brain glioma treatment. Biomaterials 33(2):704–712. doi: 10.1016/j.biomaterials.2011.09.096 CrossRefPubMedGoogle Scholar
  47. 47.
    Vogelbaum MA, Aghi MK (2015) Convection-enhanced delivery for the treatment of glioblastoma. Neuro Oncology 17(Suppl 2):ii3–ii8. doi: 10.1093/neuonc/nou354 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Oberoi RK, Parrish KE, Sio TT, Mittapalli RK, Elmquist WF, Sarkaria JN (2015) Strategies to improve delivery of anticancer drugs across the blood-brain barrier to treat glioblastoma. Neuro Oncology. doi: 10.1093/neuonc/nov164 Google Scholar
  49. 49.
    Parrish KE, Pokorny J, Mittapalli RK, Bakken K, Sarkaria JN, Elmquist WF (2015) Efflux transporters at the blood-brain barrier limit delivery and efficacy of cyclin-dependent kinase 4/6 inhibitor palbociclib (PD-0332991) in an orthotopic brain tumor model. J Pharmacol Exp Ther 355(2):264–271. doi: 10.1124/jpet.115.228213 CrossRefPubMedGoogle Scholar
  50. 50.
    Pardridge WM (2012) Drug transport across the blood-brain barrier. J Cereb Blood Flow Metab 32(11):1959–1972. doi: 10.1038/jcbfm.2012.126 CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Peluffo H, Unzueta U, Negro-Demontel ML, Xu Z, Vaquez E, Ferrer-Miralles N et al (2015) BBB-targeting, protein-based nanomedicines for drug and nucleic acid delivery to the CNS. Biotechnol Adv 33(2):277–287. doi: 10.1016/j.biotechadv.2015.02.004 CrossRefPubMedGoogle Scholar
  52. 52.
    Westphal M, Hilt DC, Bortey E, Delavault P, Olivares R, Warnke PC et al (2003) A phase 3 trial of local chemotherapy with biodegradable carmustine (BCNU) wafers (Gliadel wafers) in patients with primary malignant glioma. Neuro Oncology 5(2):79–88. doi: 10.1215/s1522-8517-02-00023-6 PubMedPubMedCentralGoogle Scholar
  53. 53.
    Antonarakis ES, Heath EI, Smith DC, Rathkopf D, Blackford AL, Danila DC et al (2013) Repurposing itraconazole as a treatment for advanced prostate cancer: a noncomparative randomized phase II trial in men with metastatic castration-resistant prostate cancer. Oncologist 18(2):163–173. doi: 10.1634/theoncologist.2012-314 CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Chong CR, Sullivan DJ Jr (2007) New uses for old drugs. Nature 448(7154):645–646. doi: 10.1038/448645a CrossRefPubMedGoogle Scholar
  55. 55.
    DiMasi JA, Hansen RW, Grabowski HG (2003) The price of innovation: new estimates of drug development costs. J Health Econ 22(2):151–185. doi: 10.1016/S0167-6296(02)00126-1 CrossRefPubMedGoogle Scholar
  56. 56.
    Furtado CM, Marcondes MC, Sola-Penna M, de Souza ML, Zancan P (2012) Clotrimazole preferentially inhibits human breast cancer cell proliferation, viability and glycolysis. PLoS One 7(2):e30462. doi: 10.1371/journal.pone.0030462 CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    McDonald KL, Ha W, Sevim H (2014) MIF-CD74 guided therapeutic strategy for the upfront treatment of GBM patients with an unmethylated MGMT promoter. Neuro-Oncology 16(suppl 3):iii4–iii5. doi: 10.1093/neuonc/nou206.15 CrossRefPubMedCentralGoogle Scholar
  58. 58.
    Wurth R, Barbieri F, Florio T (2014) New molecules and old drugs as emerging approaches to selectively target human glioblastoma cancer stem cells. BioMed Res Int 2014:126586. doi: 10.1155/2014/126586 CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Rosenfeld MR, Ye X, Supko JG, Desideri S, Grossman SA, Brem S et al (2014) A phase I/II trial of hydroxychloroquine in conjunction with radiation therapy and concurrent and adjuvant temozolomide in patients with newly diagnosed glioblastoma multiforme. Autophagy 10(8):1359–1368. doi: 10.4161/auto.28984 CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Martuscello RT, Vedam-Mai V, McCarthy DJ, Schmoll ME, Jundi MA, Louviere CD et al (2015) A supplemented high-fat low-carbohydrate diet for the treatment of glioblastoma. Clin Cancer Res. doi: 10.1158/1078-0432.ccr-15-0916 PubMedGoogle Scholar
  61. 61.
    Snuderl M, Fazlollahi L, Le LP, Nitta M, Zhelyazkova BH, Davidson CJ et al (2011) Mosaic amplification of multiple receptor tyrosine kinase genes in glioblastoma. Cancer Cell 20(6):810–817. doi: 10.1016/j.ccr.2011.11.005 CrossRefPubMedGoogle Scholar
  62. 62.
    Szerlip NJ, Pedraza A, Chakravarty D, Azim M, McGuire J, Fang Y et al (2012) Intratumoral heterogeneity of receptor tyrosine kinases EGFR and PDGFRA amplification in glioblastoma defines subpopulations with distinct growth factor response. Proc Natl Acad Sci USA 109(8):3041–3046. doi: 10.1073/pnas.1114033109 CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Sottoriva A, Spiteri I, Piccirillo SG, Touloumis A, Collins VP, Marioni JC et al (2013) Intratumor heterogeneity in human glioblastoma reflects cancer evolutionary dynamics. Proc Natl Acad Sci USA 110(10):4009–4014. doi: 10.1073/pnas.1219747110 CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Yachida S, Jones S, Bozic I, Antal T, Leary R, Fu B et al (2010) Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature 467(7319):1114–1117. doi: 10.1038/nature09515 CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Shah SP, Morin RD, Khattra J, Prentice L, Pugh T, Burleigh A et al (2009) Mutational evolution in a lobular breast tumor profiled at single nucleotide resolution. Nature 461(7265):809–813. doi: 10.1038/nature08489 CrossRefPubMedGoogle Scholar
  66. 66.
    Campbell PJ, Yachida S, Mudie LJ, Stephens PJ, Pleasance ED, Stebbings LA et al (2010) The patterns and dynamics of genomic instability in metastatic pancreatic cancer. Nature 467(7319):1109–1113. doi: 10.1038/nature09460 CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Kim H, Zheng S, Amini SS, Virk SM, Mikkelsen T, Brat DJ et al (2015) Whole-genome and multisector exome sequencing of primary and post-treatment glioblastoma reveals patterns of tumor evolution. Genome Res 25(3):316–327. doi: 10.1101/gr.180612.114 CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Rausch T, Jones DT, Zapatka M, Stutz AM, Zichner T, Weischenfeldt J et al (2012) Genome sequencing of pediatric medulloblastoma links catastrophic DNA rearrangements with TP53 mutations. Cell 148(1–2):59–71. doi: 10.1016/j.cell.2011.12.013 CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Boisselier B, Gallego Perez-Larraya J, Rossetto M, Labussiere M, Ciccarino P, Marie Y et al (2012) Detection of IDH1 mutation in the plasma of patients with glioma. Neurology 79(16):1693–1698. doi: 10.1212/WNL.0b013e31826e9b0a CrossRefPubMedGoogle Scholar
  70. 70.
    Majchrzak-Celinska A, Paluszczak J, Kleszcz R, Magiera M, Barciszewska AM, Nowak S et al (2013) Detection of MGMT, RASSF1A, p15INK4B, and p14ARF promoter methylation in circulating tumor-derived DNA of central nervous system cancer patients. J Appl Genet 54(3):335–344. doi: 10.1007/s13353-013-0149-x CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Salkeni MA, Zarzour A, Ansay TY, McPherson CM, Warnick RE, Rixe O et al (2013) Detection of EGFRvIII mutant DNA in the peripheral blood of brain tumor patients. J Neurooncol 115(1):27–35. doi: 10.1007/s11060-013-1209-0 CrossRefPubMedGoogle Scholar
  72. 72.
    Li A, Walling J, Kotliarov Y, Center A, Steed ME, Ahn SJ et al (2008) Genomic changes and gene expression profiles reveal that established glioma cell lines are poorly representative of primary human gliomas. Mol Cancer Res 6(1):21–30. doi: 10.1158/1541-7786.mcr-07-0280 CrossRefPubMedGoogle Scholar
  73. 73.
    Lee J, Kotliarova S, Kotliarov Y, Li A, Su Q, Donin NM et al (2006) Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. Cancer Cell 9(5):391–403. doi: 10.1016/j.ccr.2006.03.030 CrossRefPubMedGoogle Scholar
  74. 74.
    Pollard SM, Yoshikawa K, Clarke ID, Danovi D, Stricker S, Russell R et al (2009) Glioma stem cell lines expanded in adherent culture have tumor-specific phenotypes and are suitable for chemical and genetic screens. Cell Stem Cell 4(6):568–580. doi: 10.1016/j.stem.2009.03.014 CrossRefPubMedGoogle Scholar
  75. 75.
    Quartararo CE, Reznik E, deCarvalho AC, Mikkelsen T, Stockwell BR (2015) High-throughput screening of patient-derived cultures reveals potential for precision medicine in glioblastoma. ACS Med Chem Lett 6(8):948–952. doi: 10.1021/acsmedchemlett.5b00128 CrossRefPubMedGoogle Scholar
  76. 76.
    Malaney P, Nicosia SV, Dave V (2014) One mouse, one patient paradigm: new avatars of personalized cancer therapy. Cancer Lett 344(1):1–12. doi: 10.1016/j.canlet.2013.10.010 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Cure Brain Cancer Foundation Biomarkers and Translational Research GroupUniversity of NSWKensingtonAustralia

Personalised recommendations