Journal of Neuro-Oncology

, Volume 125, Issue 2, pp 253–263 | Cite as

IDH1 mutation-associated long non-coding RNA expression profile changes in glioma

  • Xiao-Qin Zhang
  • Karrie Mei-Yee Kiang
  • Yue-Chun Wang
  • Jenny Kan-Suen Pu
  • Amy Ho
  • Stephen Yin Cheng
  • Derek Lee
  • Ping-De Zhang
  • Jia-Jing Chen
  • Wai-Man Lui
  • Ching-Fai Fung
  • Gilberto Ka-Kit Leung
Laboratory Investigation


Isocitrate dehydrogenase 1 (IDH1) mutation is an important prognostic marker in glioma. However, its downstream effect remains incompletely understood. Long non-coding RNAs (lncRNAs) are emerging as important regulators of tumorigenesis in a number of human malignancies, including glioma. Here, we investigated whether and how lncRNA expression profiles would differ between gliomas with or without IDH1 mutation. By using our previously reported lncRNA mining approach, we performed lncRNA profiling in three public glioma microarray datasets. The differential lncRNA expression analysis was then conducted between mutant-type and wild-type IDH1 glioma samples. Comparison analysis identified 14 and 9 lncRNA probe sets that showed significantly altered expressions in astrocytic and oligodendroglial tumors, respectively (fold change ≥ 1.5, false discovery rate ≤ 0.1). Moreover, the differential expressions of these lncRNAs could be confirmed in the independent testing sets. Functional exploration of the lncRNAs by analyzing the lncRNA—protein interactions revealed that these IDH1 mutation-associated lncRNAs were involved in multiple tumor-associated cellular processes, including metabolism, cell growth and apoptosis. Our data suggest the potential roles of lncRNA in gliomagenesis, and may help to understand the pathogenesis of gliomas associated with IDH1 mutation.


IDH1 mutation Glioma LncRNA Metabolism Cell growth Cell apoptosis 



We would like to thank Dr. Stella Sun for her suggestions in data analysis.

Compliance with ethical standards

Conflict of interest

The authors declared no competing interest.

Supplementary material

11060_2015_1916_MOESM1_ESM.jpg (140 kb)
S-Fig.1: Interspecies conservation analysis of lncRNAs. Three of IDH1 mutation-associated lncRNAs (as above) showed detectable conservation at certain area. a UCSC Genome Browser on Human (hg19) Assembly; b Placental Mammal Basewise Conservation by PhyloP; c Multiz Alignment of Vertebrates. Supplementary material 1 (JPEG 140 kb)
11060_2015_1916_MOESM2_ESM.doc (104 kb)
Supplementary material 2 (DOC 103 kb)


  1. 1.
    Birney E, Stamatoyannopoulos JA, Dutta A, Guigo R, Gingeras TR, Margulies EH, Weng ZP, Snyder M, Dermitzakis ET, Stamatoyannopoulos JA et al (2007) Identification and analysis of functional elements in 1 % of the human genome by the ENCODE pilot project. Nature 447(7146):799–816PubMedCrossRefGoogle Scholar
  2. 2.
    Derrien T, Johnson R, Bussotti G, Tanzer A, Djebali S, Tilgner H, Guernec G, Martin D, Merkel A, Knowles DG et al (2012) The GENCODE v7 catalog of human long noncoding RNAs: Analysis of their gene structure, evolution, and expression. Genome Res 22(9):1775–1789PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Mercer TR, Dinger ME, Mattick JS (2009) Long non-coding RNAs: insights into functions. Nat Rev Genet 10(3):155–159PubMedCrossRefGoogle Scholar
  4. 4.
    Rinn JL, Chang HY (2012) Genome regulation by long noncoding RNAs. Annu Rev Biochem 81:145–166PubMedCrossRefGoogle Scholar
  5. 5.
    Wapinski O, Chang HY (2011) Long noncoding RNAs and human disease. Trends Cell Biol 21(6):354–361PubMedCrossRefGoogle Scholar
  6. 6.
    Wang P, Ren Z, Sun P (2012) Overexpression of the long non-coding RNA MEG3 impairs in vitro glioma cell proliferation. J Cell Biochem 113(6):1868–1874PubMedCrossRefGoogle Scholar
  7. 7.
    Shi Y, Wang Y, Luan W, Wang P, Tao T, Zhang J, Qian J, Liu N, You Y (2014) Long non-coding RNA H19 promotes glioma cell invasion by deriving miR-675. PLoS ONE 9(1):e86295PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Prensner JR, Chinnaiyan AM (2011) The emergence of lncRNAs in cancer biology. Cancer Discov 1(5):391–407PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Li R, Qian J, Wang YY, Zhang JX, You YP (2014) Long noncoding RNA profiles reveal three molecular subtypes in glioma. CNS Neurosci Ther 20(4):339–343PubMedCrossRefGoogle Scholar
  10. 10.
    Parsons DW, Jones S, Zhang X, Lin JC, Leary RJ, Angenendt P, Mankoo P, Carter H, Siu IM, Gallia GL et al (2008) An integrated genomic analysis of human glioblastoma multiforme. Science 321(5897):1807–1812PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Balss J, Meyer J, Mueller W, Korshunov A, Hartmann C, von Deimling A (2008) Analysis of the IDH1 codon 132 mutation in brain tumors. Acta Neuropathol 116(6):597–602PubMedCrossRefGoogle Scholar
  12. 12.
    Hartmann C, Meyer J, Balss J, Capper D, Mueller W, Christians A, Felsberg J, Wolter M, Mawrin C, Wick W et al (2009) Type and frequency of IDH1 and IDH2 mutations are related to astrocytic and oligodendroglial differentiation and age: a study of 1010 diffuse gliomas. Acta Neuropathol 118(4):469–474PubMedCrossRefGoogle Scholar
  13. 13.
    Sanson M, Marie Y, Paris S, Idbaih A, Laffaire J, Ducray F, El Hallani S, Boisselier B, Mokhtari K, Hoang-Xuan K et al (2009) Isocitrate Dehydrogenase 1 Codon 132 Mutation Is an Important Prognostic Biomarker in Gliomas. J Clin Oncol 27(25):4150–4154PubMedCrossRefGoogle Scholar
  14. 14.
    Watanabe T, Nobusawa S, Kleihues P, Ohgaki H (2009) IDH1 Mutations Are Early Events in the Development of Astrocytomas and Oligodendrogliomas. Am J Pathol 174(4):1149–1153PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Yan H, Parsons DW, Jin G, McLendon R, Rasheed BA, Yuan W, Kos I, Batinic-Haberle I, Jones S, Riggins GJ et al (2009) IDH1 and IDH2 mutations in gliomas. The N Engl J Med 360(8):765–773PubMedCrossRefGoogle Scholar
  16. 16.
    Ichimura K, Pearson DM, Kocialkowski S, Backlund LM, Chan R, Jones DT, Collins VP (2009) IDH1 mutations are present in the majority of common adult gliomas but rare in primary glioblastomas. Neuro Oncol 11(4):341–347PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Polivka J, Polivka J, Rohan V, Pesta M, Repik T, Pitule P, Topolcan O (2014) Isocitrate Dehydrogenase-1 mutations as prognostic biomarker in glioblastoma multiforme patients in West Bohemia. Biomed Res Int. doi: 10.1155/2014/735659 PubMedCentralPubMedGoogle Scholar
  18. 18.
    Nobusawa S, Watanabe T, Kleihues P, Ohgaki H (2009) IDH1 mutations as molecular signature and predictive factor of secondary glioblastomas. Clin Cancer Res 15(19):6002–6007PubMedCrossRefGoogle Scholar
  19. 19.
    Reitman ZJ, Jin G, Karoly ED, Spasojevic I, Yang J, Kinzler KW, He Y, Bigner DD, Vogelstein B, Yan H (2011) Profiling the effects of isocitrate dehydrogenase 1 and 2 mutations on the cellular metabolome. Proc Natl Acad Sci USA 108(8):3270–3275PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Wang Z, Bao Z, Yan W, You G, Wang Y, Li X, Zhang W (2013) Isocitrate dehydrogenase 1 (IDH1) mutation-specific microRNA signature predicts favorable prognosis in glioblastoma patients with IDH1 wild type. J Exp Clin Cancer Res 32:59PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Turcan S, Rohle D, Goenka A, Walsh LA, Fang F, Yilmaz E, Campos C, Fabius AWM, Lu C, Ward PS et al (2012) IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype. Nature 483(7390):479–483PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Zhang X, Sun S, Pu JK, Tsang AC, Lee D, Man VO, Lui WM, Wong ST, Leung GK (2012) Long non-coding RNA expression profiles predict clinical phenotypes in glioma. Neurobiol disease 48(1):1–8CrossRefGoogle Scholar
  23. 23.
    Gravendeel LAM, Kouwenhoven MCM, Gevaert O, de Rooi JJ, Stubbs AP, Duijm JE, Daemen A, Bleeker FE, Bralten LBC, Kloosterhof NK et al (2009) Intrinsic gene expression profiles of gliomas are a better predictor of survival than histology. Cancer Res 69(23):9065–9072PubMedCrossRefGoogle Scholar
  24. 24.
    Sturm D, Witt H, Hovestadt V, Khuong-Quang DA, Jones DT, Konermann C, Pfaff E, Tonjes M, Sill M, Bender S et al (2012) Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cancer Cell 22(4):425–437PubMedCrossRefGoogle Scholar
  25. 25.
    Erdem-Eraslan L, Gravendeel LA, de Rooi J, Eilers PH, Idbaih A, Spliet WG, den Dunnen WF, Teepen JL, Wesseling P, Sillevis Smitt PA et al (2013) Intrinsic molecular subtypes of glioma are prognostic and predict benefit from adjuvant procarbazine, lomustine, and vincristine chemotherapy in combination with other prognostic factors in anaplastic oligodendroglial brain tumors: a report from EORTC study 26951. J Clin Oncol 31(3):328–336PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Michiels S, Koscielny S, Hill C (2005) Prediction of cancer outcome with microarrays: a multiple random validation strategy. Lancet 365(9458):488–492PubMedCrossRefGoogle Scholar
  27. 27.
    Zhang XQ, Sun S, Lam KF, Kiang KM, Pu JK, Ho AS, Lui WM, Fung CF, Wong TS, Leung GK (2013) A long non-coding RNA signature in glioblastoma multiforme predicts survival. Neurobiol Dis 58:123–131PubMedCrossRefGoogle Scholar
  28. 28.
    Li JH, Liu S, Zhou H, Qu LH, Yang JH (2014) starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucl Acids Res 42:D92–D97PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Bellucci M, Agostini F, Masin M, Tartaglia GG (2011) Predicting protein associations with long noncoding RNAs. Nat Methods 8(6):444–445PubMedCrossRefGoogle Scholar
  30. 30.
    Bieler A, Mantwill K, Dravits T, Bernshausen A, Glockzin G, Kohler-Vargas N, Lage H, Gansbacher B, Holm PS (2006) Novel three-pronged strategy to enhance cancer cell killing in glioblastoma cell lines: histone deacetylase inhibitor, chemotherapy, and oncolytic adenovirus dl520. Hum Gene Ther 17(1):55–70PubMedCrossRefGoogle Scholar
  31. 31.
    Faury D, Nantel A, Dunn SE, Guiot MC, Haque T, Hauser P, Garami M, Bognar L, Hanzely Z, Liberski PP et al (2007) Molecular profiling identifies prognostic subgroups of pediatric glioblastoma and shows increased YB-1 expression in tumors. J Clin Oncol 25(10):1196–1208PubMedCrossRefGoogle Scholar
  32. 32.
    Rapp TB, Yang L, Conrad EU, Mandahl N, Chansky HA (2002) RNA splicing mediated by YB-1 is inhibited by TLS/CHOP in human myxoid liposarcoma cells. J Orthop Res 20(4):723–729PubMedCrossRefGoogle Scholar
  33. 33.
    Jurchott K, Kuban RJ, Krech T, Bluthgen N, Stein U, Walther W, Friese C, Kielbasa SM, Ungethum U, Lund P et al (2010) Identification of Y-Box binding protein 1 as a core regulator of MEK/ERK pathway-dependent gene signatures in colorectal cancer cells. PLoS Genet 6(12):e1001231PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Ishii H, Saitoh M, Sakamoto K, Kondo T, Katoh R, Tanaka S, Motizuki M, Masuyama K, Miyazawa K (2014) Epithelial splicing regulatory proteins 1 (ESRP1) and 2 (ESRP2) suppress cancer cell motility via different mechanisms. J Biol Chem 289(40):27386–27399PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Brooke GN, Culley RL, Dart DA, Mann DJ, Gaughan L, McCracken SR, Robson CN, Spencer-Dene B, Gamble SC, Powell SM et al (2011) FUS/TLS is a novel mediator of androgen-dependent cell-cycle progression and prostate cancer growth. Cancer Res 71(3):914–924PubMedCrossRefGoogle Scholar
  36. 36.
    Haile S, Lal A, Myung JK, Sadar MD (2011) FUS/TLS is a co-activator of androgen receptor in prostate cancer cells. PLoS One 6(9):e24197PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Haselbeck RJ, McAlister-Henn L (1993) Function and expression of yeast mitochondrial NAD- and NADP-specific isocitrate dehydrogenases. J Biol Chem 268(16):12116–12122PubMedGoogle Scholar
  38. 38.
    Dang L, White DW, Gross S, Bennett BD, Bittinger MA, Driggers EM, Fantin VR, Jang HG, Jin S, Keenan MC et al (2010) Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 465(7300):966PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Rohle D, Popovici-Muller J, Palaskas N, Turcan S, Grommes C, Campos C, Tsoi J, Clark O, Oldrini B, Komisopoulou E et al (2013) An inhibitor of mutant IDH1 delays growth and promotes differentiation of glioma cells. Science 340(6132):626–630PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Gutschner T, Hammerle M, Eissmann M, Hsu J, Kim Y, Hung G, Revenko A, Arun G, Stentrup M, Gross M et al (2013) The noncoding RNA MALAT1 is a critical regulator of the metastasis phenotype of lung cancer cells. Cancer Res 73(3):1180–1189PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Gupta RA, Shah N, Wang KC, Kim J, Horlings HM, Wong DJ, Tsai MC, Hung T, Argani P, Rinn JL et al (2010) Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 464(7291):1071–U1148PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Wang PJ, Ren ZQ, Sun PY (2012) Overexpression of the long non-coding RNA MEG3 impairs in vitro glioma cell proliferation. J Cell Biochem 113(6):1868–1874PubMedCrossRefGoogle Scholar
  43. 43.
    Gibb EA, Brown CJ, Lam WL (2011) The functional role of long non-coding RNA in human carcinomas. Mol Cancer 10:38PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Michelhaugh SK, Lipovich L, Blythe J, Jia H, Kapatos G, Bannon MJ (2011) Mining Affymetrix microarray data for long non-coding RNAs: altered expression in the nucleus accumbens of heroin abusers. J Neurochem 116(3):459–466PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Johnson R (2012) Long non-coding RNAs in Huntington’s disease neurodegeneration. Neurobiol Dis 46(2):245–254PubMedCrossRefGoogle Scholar
  46. 46.
    Hu Y, Chen HY, Yu CY, Xu J, Wang JL, Qian J, Zhang X, Fang JY (2014) A long non-coding RNA signature to improve prognosis prediction of colorectal cancer. Oncotarget 5(8):2230–2242PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    Meng J, Li P, Zhang Q, Yang Z, Fu S (2014) A four-long non-coding RNA signature in predicting breast cancer survival. J Exp Clin Cancer Res 33(1):84PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    Pang JCS, Li KKW, Lau KM, Ng YL, Wong J, Chung NYF, Li HM, Chui YL, Lui VWY, Chen ZP et al (2010) KIAA0495/PDAM Is Frequently Downregulated in Oligodendroglial Tumors and Its Knockdown by siRNA Induces Cisplatin Resistance in Glioma Cells. Brain Pathol 20(6):1021–1032PubMedCrossRefGoogle Scholar
  49. 49.
    Zhang X, Weissman SM, Newburger PE (2014) Long intergenic non-coding RNA HOTAIRM1 regulates cell cycle progression during myeloid maturation in NB4 human promyelocytic leukemia cells. RNA Biol 11(6):777–787PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Zhou Y, Zhang X, Klibanski A (2012) MEG3 noncoding RNA: a tumor suppressor. J Mol Endocrinol 48(3):R45–53PubMedCentralPubMedCrossRefGoogle Scholar
  51. 51.
    Zhang X, Rice K, Wang YY, Chen WD, Zhong Y, Nakayama Y, Zhou YL, Klibanski A (2010) Maternally expressed gene 3 (MEG3) noncoding ribonucleic acid: isoform structure, expression, and functions. Endocrinology 151(3):939–947PubMedCentralPubMedCrossRefGoogle Scholar
  52. 52.
    Zhou Y, Zhong Y, Wang Y, Zhang X, Batista DL, Gejman R, Ansell PJ, Zhao J, Weng C, Klibanski A (2007) Activation of p53 by MEG3 non-coding RNA. J Biol Chem 282(34):24731–24742PubMedCrossRefGoogle Scholar
  53. 53.
    Zhang X, Zhou YL, Mehta KR, Danila DC, Scolavino S, Johnson SR, Klibanski A (2003) A pituitary-derived MEG3 isoform functions as a growth suppressor in tumor cells. J Clin Endocr Metab 88(11):5119–5126PubMedCrossRefGoogle Scholar
  54. 54.
    Zhang XQ, Leung GK (2014) Long non-coding RNAs in glioma: Functional roles and clinical perspectives. Neurochem Int 77:78–85PubMedCrossRefGoogle Scholar
  55. 55.
    McCarthy N (2012) Metabolism: unmasking an oncometabolite. Nat Rev Cancer 12(4):229PubMedCrossRefGoogle Scholar
  56. 56.
    Reitman ZJ, Yan H (2010) Isocitrate dehydrogenase 1 and 2 mutations in cancer: alterations at a crossroads of cellular metabolism. J Natl Cancer Inst 102(13):932–941PubMedCentralPubMedCrossRefGoogle Scholar
  57. 57.
    Kung JTY, Colognori D, Lee JT (2013) Long noncoding RNAs: past, present, and future. Genetics 193(3):651–669PubMedCentralPubMedCrossRefGoogle Scholar
  58. 58.
    Wilusz JE, Sunwoo H, Spector DL (2009) Long noncoding RNAs: functional surprises from the RNA world. Genes Dev 23(13):1494–1504PubMedCentralPubMedCrossRefGoogle Scholar
  59. 59.
    Ulitsky I, Bartel DP (2013) lincRNAs: genomics, evolution, and mechanisms. Cell 154(1):26–46PubMedCentralPubMedCrossRefGoogle Scholar
  60. 60.
    Wu L, Murat P, Matak-Vinkovic D, Murrell A, Balasubramanian S (2013) Binding Interactions between Long Noncoding RNA HOTAIR and PRC2 Proteins. Biochemistry 52(52):9519–9527PubMedCentralPubMedCrossRefGoogle Scholar
  61. 61.
    Gupta RA, Shah N, Wang KC, Kim J, Horlings HM, Wong DJ, Tsai MC, Hung T, Argani P, Rinn JL et al (2010) Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 464(7291):1071–1076PubMedCentralPubMedCrossRefGoogle Scholar
  62. 62.
    Kornienko AE, Guenzl PM, Barlow DP, Pauler FM (2013) Gene regulation by the act of long non-coding RNA transcription. BMC Biol 11:59PubMedCentralPubMedCrossRefGoogle Scholar
  63. 63.
    Lu QS, Ren SJ, Lu M, Zhang Y, Zhu DH, Zhang XG, Li TT (2013) Computational prediction of associations between long non-coding RNAs and proteins. BMC Genomics 14:651PubMedCentralPubMedCrossRefGoogle Scholar
  64. 64.
    Zhu JJ, Fu HJ, Wu YG, Zheng XF (2013) Function of lncRNAs and approaches to lncRNA-protein interactions. Sci China-Life Sci 56(10):876–885PubMedCrossRefGoogle Scholar
  65. 65.
    Bell JL, Wachter K, Muhleck B, Pazaitis N, Kohn M, Lederer M, Huttelmaier S (2013) Insulin-like growth factor 2 mRNA-binding proteins (IGF2BPs): post-transcriptional drivers of cancer progression? Cell Mol Life Sci 70(15):2657–2675PubMedCentralPubMedCrossRefGoogle Scholar
  66. 66.
    Lederer M, Bley N, Schleifer C, Huttelmaier S (2014) The role of the oncofetal IGF2 mRNA-binding protein 3 (IGF2BP3) in cancer. Semin Cancer Biol 29:3–12PubMedCrossRefGoogle Scholar
  67. 67.
    Cho S, Kim JH, Back SH, Jang SK (2005) Polypyrimidine tract-binding protein enhances the internal ribosomal entry site-dependent translation of p27Kip1 mRNA and modulates transition from G1 to S phase. Mol Cell Biol 25(4):1283–1297PubMedCentralPubMedCrossRefGoogle Scholar
  68. 68.
    Shibayama M, Ohno S, Osaka T, Sakamoto R, Tokunaga A, Nakatake Y, Sato M, Yoshida N (2009) Polypyrimidine tract-binding protein is essential for early mouse development and embryonic stem cell proliferation. FEBS J 276(22):6658–6668PubMedCrossRefGoogle Scholar
  69. 69.
    He X, Arslan AD, Ho TT, Yuan C, Stampfer MR, Beck WT (2014) Involvement of polypyrimidine tract-binding protein (PTBP1) in maintaining breast cancer cell growth and malignant properties. Oncogenesis 3:e84PubMedCentralPubMedCrossRefGoogle Scholar
  70. 70.
    He X, Pool M, Darcy KM, Lim SB, Auersperg N, Coon JS, Beck WT (2007) Knockdown of polypyrimidine tract-binding protein suppresses ovarian tumor cell growth and invasiveness in vitro. Oncogene 26(34):4961–4968PubMedCentralPubMedCrossRefGoogle Scholar
  71. 71.
    Jalali S, Bhartiya D, Lalwani MK, Sivasubbu S, Scaria V (2013) Systematic transcriptome wide analysis of lncRNA-miRNA interactions. PLoS ONE 8(2):e53823PubMedCentralPubMedCrossRefGoogle Scholar
  72. 72.
    Cesana M, Cacchiarelli D, Legnini I, Santini T, Sthandier O, Chinappi M, Tramontano A, Bozzoni I (2011) A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell 147(2):358–369PubMedCentralPubMedCrossRefGoogle Scholar
  73. 73.
    Guo L, Zhao Y, Yang S, Zhang H, Chen F (2014) An integrated analysis of miRNA, lncRNA, and mRNA expression profiles. Biomed Res Int 2014:345605PubMedCentralPubMedGoogle Scholar
  74. 74.
    Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD, Miller CR, Ding L, Golub T, Mesirov JP et al (2010) Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17(1):98–110PubMedCentralPubMedCrossRefGoogle Scholar
  75. 75.
    Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP (2011) A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell 146(3):353–358PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Xiao-Qin Zhang
    • 1
  • Karrie Mei-Yee Kiang
    • 1
  • Yue-Chun Wang
    • 2
  • Jenny Kan-Suen Pu
    • 1
  • Amy Ho
    • 1
  • Stephen Yin Cheng
    • 1
  • Derek Lee
    • 1
  • Ping-De Zhang
    • 1
  • Jia-Jing Chen
    • 2
  • Wai-Man Lui
    • 1
  • Ching-Fai Fung
    • 1
  • Gilberto Ka-Kit Leung
    • 1
  1. 1.Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong KongQueen Mary HospitalHong KongChina
  2. 2.Department of PhysiologyMedicine College of Jinan UniversityGuangzhouChina

Personalised recommendations