Journal of Neuro-Oncology

, Volume 125, Issue 2, pp 317–324 | Cite as

Post-radiosurgical edema associated with parasagittal and parafalcine meningiomas: a multicenter study

  • Jason P. SheehanEmail author
  • Or Cohen-Inbar
  • Rawee Ruangkanchanasetr
  • S. Bulent Omay
  • Judith Hess
  • Veronica Chiang
  • Christian Iorio-Morin
  • Michelle Alonso-Basanta
  • David Mathieu
  • Inga S. Grills
  • John Y. K. Lee
  • Cheng-Chia Lee
  • L. Dade Lunsford
Clinical Study


Stereotactic radiosurgery (SRS) offers a high degree of tumor control for benign meningiomas. However, radiosurgery can occasionally incite edema or exacerbate pre-existing peri-tumoral edema. The current study investigates the incidence, timing, and extent of edema around parasagittal or parafalcine meningiomas following SRS. A retrospective multicenter review was undertaken through participating centers in the International Gamma Knife Research Foundation (previously the North American Gamma Knife Consortium or NAGKC). All included patients had a parafalcine or parasagittal meningioma and a minimum of 6 months follow up. The median follow up was 19.6 months (6–158 months). Extent of new or worsening edema was quantitatively analyzed using volumetric analysis; edema indices were longitudinally computed following radiosurgery. Analysis was performed to identify prognostic factors for new or worsening edema. A cohort of 212 patients comprised of 51.9 % (n = 110) females, 40.1 % upfront SRS and 59.9 % underwent adjuvant SRS for post-surgical residual tumor. The median tumor volume at SRS was 5.2 ml. Venous sinus compression or invasion was demonstrated in 25 % (n = 53). The median marginal dose was 14 Gy (8–20 Gy). Tumor volume control was determined in 77.4 % (n = 164 out of 212 patients). Tumor edema progressed and then regressed in 33 % (n = 70), was stable or regressed in 52.8 % (n = 112), and progressively worsened in 5.2 % (n = 11). Tumor location, tumor volume, venous sinus invasion, margin, and maximal dose were found to be significantly related to post-SRS edema in multivariate analysis. SRS affords a high degree of tumor control for patients with parasagittal or parafalcine meningiomas. Nevertheless, SRS can lead to worsening peritumoral edema in a subset of patients such as those with larger tumors (>10 cc) and venous sinus invasion/compression. Long-term follow up is required to detect and appropriately manage post-SRS edema.


Radiosurgery Gamma Knife Meningioma Edema 


Compliance with ethical standards


Dr. Grills have stock ownership and serve on the Board of Directors in a company called Greater Michigan Gamma Knife. Dr. Lunsford is a consultant and has stock in Elekta AB. Dr. Daniel Pieper helped with this work but passed away during the research process.


  1. 1.
    Ding D, Xu Z, McNeill IT et al (2013) Radiosurgery for parasagittal and parafalcine meningiomas. J Neurosurg 119:871–877CrossRefPubMedGoogle Scholar
  2. 2.
    Gurkanlar D, Er U, Sanli M et al (2005) Peritumoral brain edema in intracranial meningiomas. J Clin Neurosci 12:750–753CrossRefPubMedGoogle Scholar
  3. 3.
    Osawa T, Tosaka M, Nagaishi M et al (2013) Factors affecting peritumoral brain edema in meningioma: special histological subtypes with prominently extensive edema. J Neurooncol 111:49–57CrossRefPubMedGoogle Scholar
  4. 4.
    Otsuka S, Tamiya T, Ono Y et al (2004) The relationship between peritumoral brain edema and the expression of vascular endothelial growth factor and its receptors in intracranial meningiomas. J Neurooncol 70:349–357CrossRefPubMedGoogle Scholar
  5. 5.
    Simis A, Pires de Aguiar PH, Leite CC et al (2008) Peritumoral brain edema in benign meningiomas: correlation with clinical, radiologic, and surgical factors and possible role on recurrence. Surg Neurol 70:471–477 discussion 477 CrossRefPubMedGoogle Scholar
  6. 6.
    Cai R, Barnett GH, Novak E et al (2010) Principal risk of peritumoral edema after stereotactic radiosurgery for intracranial meningioma is tumor-brain contact interface area. Neurosurgery 66:513–522CrossRefPubMedGoogle Scholar
  7. 7.
    Hasegawa T, Kida Y, Yoshimoto M et al (2011) Gamma Knife surgery for convexity, parasagittal, and falcine meningiomas. J Neurosurg 114:1392–1398PubMedGoogle Scholar
  8. 8.
    Kan P, Liu JK, Wendland MM et al (2007) Peritumoral edema after stereotactic radiosurgery for intracranial meningiomas and molecular factors that predict its development. J Neurooncol 83:33–38CrossRefPubMedGoogle Scholar
  9. 9.
    Novotny J Jr, Kollova A, Liscak R (2006) Prediction of intracranial edema after radiosurgery of meningiomas. J Neurosurg 105(Suppl):120–126PubMedGoogle Scholar
  10. 10.
    Patil CG, Hoang S, Borchers DJ 3rd et al (2008) Predictors of peritumoral edema after stereotactic radiosurgery of supratentorial meningiomas. Neurosurgery 63:435–440 discussion 440-432 CrossRefPubMedGoogle Scholar
  11. 11.
    Singh VP, Kansai S, Vaishya S et al (2000) Early complications following gamma knife radiosurgery for intracranial meningiomas. J Neurosurg 93(Suppl 3):57–61PubMedGoogle Scholar
  12. 12.
    Unger KR, Lominska CE, Chanyasulkit J et al (2012) Risk factors for post treatment edema in patients treated with stereotactic radiosurgery for meningiomas. Neurosurgery 70:639–645CrossRefPubMedGoogle Scholar
  13. 13.
    Snell JW, Sheehan J, Stroila M et al (2006) Assessment of imaging studies used with radiosurgery: a volumetric algorithm and an estimation of its error. Technical note. J Neurosurg 104:157–162CrossRefPubMedGoogle Scholar
  14. 14.
    Pan HC, Sun MH, Chen CC et al (2008) Neuroimaging and quality-of-life outcomes in patients with brain metastasis and peritumoral edema who undergo Gamma Knife surgery. J Neurosurg 109(Suppl):90–98PubMedGoogle Scholar
  15. 15.
    Bursac Z, Gauss CH, Williams DK et al (2008) Purposeful selection of variables in logistic regression. Source Code Biol Med 3:17PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.
    Lee KJ, Joo WI, Rha HK et al (2008) Peritumoral brain edema in meningiomas: correlations between magnetic resonance imaging, angiography, and pathology. Surg Neurol 69:350–355 discussion 355 CrossRefPubMedGoogle Scholar
  17. 17.
    Chang JH, Chang JW, Choi JY et al (2003) Complications after gamma knife radiosurgery for benign meningiomas. J Neurol Neurosurg Psychiatry 74:226–230PubMedCentralCrossRefPubMedGoogle Scholar
  18. 18.
    Kobayashi T, Kida Y, Mori Y (2001) Long-term results of stereotactic gamma radiosurgery of meningiomas. Surg Neurol 55:325–331CrossRefPubMedGoogle Scholar
  19. 19.
    Oermann EK, Bhandari R, Chen VJ et al (2013) Five fraction image-guided radiosurgery for primary and recurrent meningiomas. Front Oncol 3:213PubMedCentralCrossRefPubMedGoogle Scholar
  20. 20.
    Sughrue ME, Kane AJ, Shangari G et al (2010) The relevance of Simpson Grade I and II resection in modern neurosurgical treatment of World Health Organization Grade I meningiomas. J Neurosurg 113:1029–1035CrossRefPubMedGoogle Scholar
  21. 21.
    Kuhn EN, Taksler GB, Dayton O et al (2014) Is there a tumor volume threshold for post-radiosurgical symptoms? A single-institution analysis. Neurosurgery 75:536–545CrossRefPubMedGoogle Scholar
  22. 22.
    Girvigian MR, Chen JC, Rahimian J et al (2008) Comparison of early complications for patients with convexity and parasagittal meningiomas treated with either stereotactic radiosurgery or fractionated stereotactic radiotherapy. Neurosurgery 62:A19–A27 discussion A27-18 CrossRefPubMedGoogle Scholar
  23. 23.
    Morimoto M, Yoshioka Y, Shiomi H et al (2011) Significance of tumor volume related to peritumoral edema in intracranial meningioma treated with extreme hypofractionated stereotactic radiation therapy in three to five fractions. Jpn J Clin Oncol 41(5):609–616CrossRefPubMedGoogle Scholar
  24. 24.
    Yoshioka H, Hama S, Taniguchi E et al (1999) Peritumoral brain edema associated with meningioma: influence of vascular endothelial growth factor expression and vascular blood supply. Cancer 85:936–944CrossRefPubMedGoogle Scholar
  25. 25.
    Stevens JM, Ruiz JS, Kendall BE (1983) Observations on peritumoral edema in meningioma. Part II: mechanisms of edema production. Neuroradiology 25:125–131CrossRefPubMedGoogle Scholar
  26. 26.
    Nassehi D (2013) Intracranial meningiomas, the VEGF-A pathway, and peritumoral brain oedema. Dan Med J 60(4):B4626PubMedGoogle Scholar
  27. 27.
    Levin VA, Bidaut L, Hou P et al (2011) Randomized double-blind placebo-controlled trial of bevacizumab therapy for radiation necrosis of the central nervous system. Int J Radiat Oncol Biol Phys 79:1487–1495PubMedCentralCrossRefPubMedGoogle Scholar
  28. 28.
    Lou E, Sumrall AL, Turner S et al (2012) Bevacizumab therapy for adults with recurrent/progressive meningioma: a retrospective series. J Neurooncol 109:63–70PubMedCentralCrossRefPubMedGoogle Scholar
  29. 29.
    Deibert CP, Ahluwalia MS, Sheehan JP et al (2013) Bevacizumab for refractory adverse radiation effects after stereotactic radiosurgery. J Neurooncol 115(2):217–223CrossRefPubMedGoogle Scholar
  30. 30.
    Williams BJ, Park DM, Sheehan JP (2012) Bevacizumab used for the treatment of severe, refractory perilesional edema due to an arteriovenous malformation treated with stereotactic radiosurgery. J Neurosurg 116:972–977CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Jason P. Sheehan
    • 1
    Email author
  • Or Cohen-Inbar
    • 1
  • Rawee Ruangkanchanasetr
    • 5
  • S. Bulent Omay
    • 2
  • Judith Hess
    • 2
  • Veronica Chiang
    • 2
  • Christian Iorio-Morin
    • 3
  • Michelle Alonso-Basanta
    • 5
  • David Mathieu
    • 3
  • Inga S. Grills
    • 4
  • John Y. K. Lee
    • 5
  • Cheng-Chia Lee
    • 1
  • L. Dade Lunsford
    • 6
  1. 1.Department of Neurological SurgeryUniversity of VirginiaCharlottesvilleUSA
  2. 2.Yale UniversityNew HavenUSA
  3. 3.Université de Sherbrooke and Centre de recherche du CHUSSherbrookeCanada
  4. 4.Beaumont Health SystemRoyal OakUSA
  5. 5.University of PennsylvaniaPhiladelphiaUSA
  6. 6.University of PittsburghPittsburghUSA

Personalised recommendations