Journal of Neuro-Oncology

, Volume 123, Issue 2, pp 217–224 | Cite as

Combination treatment of TRAIL, DFMO and radiation for malignant glioma cells

  • George A. Alexiou
  • Konstantinos I. Tsamis
  • Evrysthenis Vartholomatos
  • Evangelia Peponi
  • Eftychia Tzima
  • Ifigeneia Tasiou
  • Efstathios Lykoudis
  • Pericles Tsekeris
  • Athanasios P. Kyritsis
Laboratory Investigation

Abstract

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has shown potent and cancer-selective killing activity and drawn considerable attention as a promising therapy for cancer. Another promising cancer therapy is difluoromethylornithine (DFMO), an inhibitor of ornithine decarboxylase, which is oraly administered and well tolerated. Nevertheless, many types of cancer, including gliomas, have exhibited resistance to TRAIL-induced apoptosis and similarly the potency of DFMO should be enhanced to optimize therapeutic efficacy. In this study we sought to determine whether DFMO, in combination with TRAIL and radiation, could result in an enhanced anti-glioma effect in vitro. We investigated the effect of DFMO, TRAIL and radiation in various combinations on a panel of glioblastoma cell lines (A172, T98G, D54, U251MG). Viability and proliferation of the cells were examined with trypan blue exclusion assay, crystal violet and xCELLigence system. Apoptosis (Annexin-PI), cell cycle and activation of caspase-8 were tested with flow cytometry. BAD protein levels were determined by Western blot analysis. DFMO induced BAD overexpression. Combination treatment with DFMO, TRAIL and radiation significantly reduced cell viability in all cell lines tested. Increased induction of cell death and cell cycle arrest was confirmed with flow cytometry in A172 and D54 cell lines, while enhanced activation of annexin and caspase-8 was revealed in U251MG and T98G cells. The treatment of glioblastoma cell lines with combination of DFMO, TRAIL and radiation showed an enhanced effect. This combination treatment may represent a novel strategy for targeting glioblastoma.

Keywords

Glioma TRAIL DFMO Radiation 

Notes

Acknowledgments

This work was supported by a grant from the Joseph and Esther Gani Foundation.

References

  1. 1.
    Liu Y, Shete S, Etzel CJ, Scheurer M, Alexiou G, Armstrong G et al (2010) Polymorphisms of LIG4, BTBD2, HMGA2, and RTEL1 genes involved in the double-strand break repair pathway predict glioblastoma survival. J Clin Oncol 28:2467–2474CrossRefPubMedCentralPubMedGoogle Scholar
  2. 2.
    Alexiou GA, Goussia A, Voulgaris S, Fotopoulos AD, Fotakopoulos G, Ntoulia A, Zikou A, Tsekeris P, Argyropoulou MI, Kyritsis AP (2012) Prognostic significance of MRP5 immunohistochemical expression in glioblastoma. Cancer Chemother Pharmacol 69:1387–1391CrossRefPubMedGoogle Scholar
  3. 3.
    Alexiou GA, Tsamis K, Kyritsis AP. Targeting tumor necrosis factor–related apoptosis-inducing ligand (TRAIL): a promising therapeutic strategy in gliomas. Semin Pediatr Neurol. (in press) doi: 10.1016/j.spen.2014.12.002
  4. 4.
    Tsamis KI, Alexiou GA, Vartholomatos E, Kyritsis AP (2013) Combination treatment for glioblastoma cells with tumor necrosis factor-related apoptosis-inducing ligand and oncolytic adenovirus delta-24. Cancer Invest 31:630–638CrossRefPubMedGoogle Scholar
  5. 5.
    Verbrugge I, de Vries E, Tait SW, Wissink EH, Walczak H, Verheij M, Borst J (2008) Ionizing radiation modulates the TRAIL death-inducing signaling complex, allowing bypass of the mitochondrial apoptosis pathway. Oncogene 27:574–584CrossRefPubMedGoogle Scholar
  6. 6.
    Kim MR, Lee JY, Park MT, Chun YJ, Jang YJ, Kang CM, Kim HS, Cho CK, Lee YS, Jeong HY, Lee SJ (2001) Ionizing radiation can overcome resistance to TRAIL in TRAIL-resistant cancer cells. FEBS Lett 505:179–184CrossRefPubMedGoogle Scholar
  7. 7.
    Ueda A, Araie M, Kubota S (2008) Polyamine depletion induces G1 and S phase arrest in human retinoblastoma Y79 cells. Cancer Cell Int 21(8):2CrossRefGoogle Scholar
  8. 8.
    Laukaitis CM, Gerner EW (2011) DFMO: targeted risk reduction therapy for colorectal neoplasia. Best Pract Res Clin Gastroenterol 25:495–506CrossRefPubMedCentralPubMedGoogle Scholar
  9. 9.
    Redgate ES, Alexander D, Magra TR, Henretty JS, Patrene KD, Boggs SS (2001) The effect of DFMO induced uptake of [3H] putrescine on human glioma cells. J Neurooncol 55:71–80CrossRefPubMedGoogle Scholar
  10. 10.
    Tsukahara T, Tamura M, Yamazaki H, Kurihara H, Matsuzaki S (1992) The additive effect of alpha-difluoromethylornithine (DFMO) and radiation therapy on a rat glioma model. J Cancer Res Clin Oncol 118:171–175CrossRefPubMedGoogle Scholar
  11. 11.
    Puduvalli VK, Sampath D, Bruner JM, Nangia J, Xu R, Kyritsis AP (2005) TRAIL-induced apoptosis in gliomas is enhanced by Akt-inhibition and is independent of JNK activation. Apoptosis 10:233–243CrossRefPubMedGoogle Scholar
  12. 12.
    Mitlianga PG, Sioka C, Vartholomatos G et al (2006) p53 enhances the delta-24 conditionally replicative adenovirus anti-glioma effect. Oncol Rep 15:149–153PubMedGoogle Scholar
  13. 13.
    Taghiyev AF, Guseva NV, Harada H, Knudson CM, Rokhlin OW, Cohen MB (2003) Overexpression of BAD potentiates sensitivity to tumor necrosis factor-related apoptosis-inducing ligand treatment in the prostatic carcinoma cell line LNCaP. Mol Cancer Res 1:500–507PubMedGoogle Scholar
  14. 14.
    Sottoriva A, Spiteri I, Piccirillo SG, Touloumis A, Collins VP, Marioni JC, Curtis C, Watts C, Tavaré S (2013) Intratumor heterogeneity in human glioblastoma reflects cancer evolutionary dynamics. Proc Natl Acad Sci U S A 110:4009–4014CrossRefPubMedCentralPubMedGoogle Scholar
  15. 15.
    Meyskens FL Jr, Gerner EW (1999) Development of difluoromethylornithine (DFMO) as a chemoprevention agent. Clin Cancer Res 5:945–951PubMedGoogle Scholar
  16. 16.
    Levin VA, Hess KR, Choucair A, Flynn PJ, Jaeckle KA, Kyritsis AP, Yung WK, Prados MD, Bruner JM, Ictech S, Gleason MJ, Kim HW (2003) Phase III randomized study of postradiotherapy chemotherapy with combination alpha-difluoromethylornithine-PCV versus PCV for anaplastic gliomas. Clin Cancer Res 9:981–990PubMedGoogle Scholar
  17. 17.
    Levin VA, Uhm JH, Jaeckle KA, Choucair A, Flynn PJ, Yung WKA, Prados MD, Bruner JM, Chang SM, Kyritsis AP, Gleason MJ, Hess KR (2000) Phase III randomized study of postradiotherapy chemotherapy with alpha-difluoromethylornithine-procarbazine, N-(2-chloroethyl)-N′-cyclohexyl-N-nitrosurea, vincristine (DFMO-PCV) versus PCV for glioblastoma multiforme. Clin Cancer Res 6:3878–3884PubMedGoogle Scholar
  18. 18.
    Terzis AJ, Pedersen PH, Feuerstein BG, Arnold H, Bjerkvig R, Deen DF (1998) Effects of DFMO on glioma cell proliferation, migration and invasion in vitro. J Neurooncol 36:113–121CrossRefPubMedGoogle Scholar
  19. 19.
    Koomoa DL, Geerts D, Lange I, Koster J, Pegg AE, Feith DJ, Bachmann AS (2013) DFMO/eflornithine inhibits migration and invasion downstream of MYCN and involves p27Kip1 activity in neuroblastoma. Int J Oncol 42:1219–1228PubMedCentralPubMedGoogle Scholar
  20. 20.
    Fong LY, Nguyen VT, Pegg AE, Magee PN (2001) Alpha-difluoromethylornithine induction of apoptosis: a mechanism which reverses pre-established cell proliferation and cancer initiation in esophageal carcinogenesis in zinc-deficient rats. Cancer Epidemiol Biomark Prev 10:191–199Google Scholar
  21. 21.
    Lee JJ, Kim BC, Park MJ, Lee YS, Kim YN, Lee BL, Lee JS (2011) PTEN status switches cell fate between premature senescence and apoptosis in glioma exposed to ionizing radiation. Cell Death Differ 18:666–677CrossRefPubMedCentralPubMedGoogle Scholar
  22. 22.
    Ashkenazi A, Pai RC, Fong S, Leung S, Lawrence DA, Marsters SA et al (1999) Safety and antitumor activity of recombinant soluble Apo2 ligand. J Clin Invest 104:155–162CrossRefPubMedCentralPubMedGoogle Scholar
  23. 23.
    Walczak H, Miller RE, Ariail K, Gliniak B, Griffith TS, Kubin M et al (1999) Tumoricidal activity of tumor necrosis factor-related apoptosis-inducing ligand in vivo. Nat Med 5:157–163CrossRefPubMedGoogle Scholar
  24. 24.
    Kuijlen JM, Bremer E, Mooij JJ, den DunnenWF WF, Helfrich W (2010) Review: on TRAIL for malignant glioma therapy? Neuropathol Appl Neurobiol 36:168–182CrossRefPubMedGoogle Scholar
  25. 25.
    Marini P, Schmid A, Jendrossek V et al (2005) Irradiation specifically sensitises solid tumour cell lines to TRAIL mediated apoptosis. BMC Cancer 5:5CrossRefPubMedCentralPubMedGoogle Scholar
  26. 26.
    Yao KC, Komata T, Kondo Y, Kanzawa T, Kondo S, Germano IM (2003) Molecular response of human glioblastoma multiforme cells to ionizing radiation: cell cycle arrest, modulation of the expression of cyclin-dependent kinase inhibitors, and autophagy. J Neurosurg 98:378–384CrossRefPubMedGoogle Scholar
  27. 27.
    Yount GL, Afshar G, Ries S et al (2001) Transcriptional activation of TRADD mediates p53-independent radiation-induced apoptosis of glioma cells. Oncogene 20:2826–2835CrossRefPubMedGoogle Scholar
  28. 28.
    Dietrich J, Han R, Yang Y, Mayer-Pröschel M, Noble M (2006) CNS progenitor cells and oligodendrocytes are targets of chemotherapeutic agents in vitro and in vivo. J Biol 5:22CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • George A. Alexiou
    • 1
  • Konstantinos I. Tsamis
    • 1
  • Evrysthenis Vartholomatos
    • 1
  • Evangelia Peponi
    • 2
  • Eftychia Tzima
    • 2
  • Ifigeneia Tasiou
    • 2
  • Efstathios Lykoudis
    • 1
  • Pericles Tsekeris
    • 2
  • Athanasios P. Kyritsis
    • 1
  1. 1.Neurosurgical Institute, Medical SchoolUniversity of IoanninaIoanninaGreece
  2. 2.Department of Radiation OncologyUniversity Hospital of IoanninaIoanninaGreece

Personalised recommendations