Journal of Neuro-Oncology

, Volume 123, Issue 2, pp 205–216 | Cite as

miRNA contents of cerebrospinal fluid extracellular vesicles in glioblastoma patients

  • Johnny C. Akers
  • Valya Ramakrishnan
  • Ryan Kim
  • Shirley Phillips
  • Vivek Kaimal
  • Ying Mao
  • Wei Hua
  • Isaac Yang
  • Chia-Chun Fu
  • John Nolan
  • Ichiro Nakano
  • Yuanfan Yang
  • Martin Beaulieu
  • Bob S. Carter
  • Clark C. Chen
Laboratory Investigation

Abstract

Analysis of extracellular vesicles (EVs) derived from plasma or cerebrospinal fluid (CSF) has emerged as a promising biomarker platform for therapeutic monitoring in glioblastoma patients. However, the contents of the various subpopulations of EVs in these clinical specimens remain poorly defined. Here we characterize the relative abundance of miRNA species in EVs derived from the serum and cerebrospinal fluid of glioblastoma patients. EVs were isolated from glioblastoma cell lines as well as the plasma and CSF of glioblastoma patients. The microvesicle subpopulation was isolated by pelleting at 10,000×g for 30 min after cellular debris was cleared by a 2000×g (20 min) spin. The exosome subpopulation was isolated by pelleting the microvesicle supernatant at 120,000×g (120 min). qRT-PCR was performed to examine the distribution of miR-21, miR-103, miR-24, and miR-125. Global miRNA profiling was performed in select glioblastoma CSF samples. In plasma and cell line derived EVs, the relative abundance of miRNAs in exosome and microvesicles were highly variable. In some specimens, the majority of the miRNA species were found in exosomes while in other, they were found in microvesicles. In contrast, CSF exosomes were enriched for miRNAs relative to CSF microvesicles. In CSF, there is an average of one molecule of miRNA per 150–25,000 EVs. Most EVs derived from clinical biofluids are devoid of miRNA content. The relative distribution of miRNA species in plasma exosomes or microvesicles is unpredictable. In contrast, CSF exosomes are the major EV compartment that harbor miRNAs.

Keywords

Biomarkers Biofluids Cancer Exosomes Microvesicles 

Notes

Acknowledgments

The work is supported by NIH UH2 TR000931-0, NIH PO1 2P30CA023100-28 (BSC and CCC) and International S&T Cooperation Program of China, 2014DFA31470 (CCC and YM). CCC is supported by the Doris Duke Charitable Foundation Clinical Scientist Development Award, Sontag Foundation Distinguished Scientist Award, Burroughs Wellcome Fund Career Awards for Medical Scientists, the Kimmel Scholar Award, a Grant from Accelerated Brain Cancer Cure, and the William Guy Forbeck Research Foundation.

Conflict of interest

None.

Supplementary material

11060_2015_1784_MOESM1_ESM.docx (1.6 mb)
Supplementary material 1 (docx 1596 kb)

References

  1. 1.
    Ostrom QT, Gittleman H, Farah P, Ondracek A, Chen Y et al (2013) CBTRUS statistical report: Primary brain and central nervous system tumors diagnosed in the United States in 2006–2010. Neuro Oncol. 15(Suppl 2):ii1–ii56CrossRefPubMedCentralPubMedGoogle Scholar
  2. 2.
    Bartek J Jr, Ng K, Bartek J, Fischer W, Carter B et al (2012) Key concepts in glioblastoma therapy. J Neurol Neurosurg Psychiatry 83:753–760CrossRefPubMedGoogle Scholar
  3. 3.
    Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJ et al (2009) Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 10:459–466CrossRefPubMedGoogle Scholar
  4. 4.
    Clarke JL, Chang SM (2012) Neuroimaging: diagnosis and response assessment in glioblastoma. Cancer J 18:26–31CrossRefPubMedGoogle Scholar
  5. 5.
    Sorensen AG, Batchelor TT, Wen PY, Zhang WT, Jain RK (2008) Response criteria for glioma. Nat Clin Pract Oncol 5:634–644CrossRefPubMedGoogle Scholar
  6. 6.
    Teodori L, Albertini MC, Uguccioni F, Falcieri E, Rocchi MB et al (2006) Static magnetic fields affect cell size, shape, orientation, and membrane surface of human glioblastoma cells, as demonstrated by electron, optic, and atomic force microscopy. Cytometry A 69:75–85CrossRefPubMedGoogle Scholar
  7. 7.
    Chen CC, Motegi A, Hasegawa Y, Myung K, Kolodner R et al (2006) Genetic analysis of ionizing radiation-induced mutagenesis in Saccharomyces cerevisiae reveals TransLesion Synthesis (TLS) independent of PCNA K164 SUMOylation and ubiquitination. DNA Repair (Amst) 5:1475–1488CrossRefGoogle Scholar
  8. 8.
    Verma N, Cowperthwaite MC, Burnett MG, Markey MK (2013) Differentiating tumor recurrence from treatment necrosis: a review of neuro-oncologic imaging strategies. Neuro Oncol 15:515–534CrossRefPubMedCentralPubMedGoogle Scholar
  9. 9.
    Air EL, Leach JL, Warnick RE, McPherson CM (2009) Comparing the risks of frameless stereotactic biopsy in eloquent and noneloquent regions of the brain: a retrospective review of 284 cases. J Neurosurg 111:820–824CrossRefPubMedGoogle Scholar
  10. 10.
    Chen CC, Hsu PW, Erich Wu TW, Lee ST, Chang CN et al (2009) Stereotactic brain biopsy: single center retrospective analysis of complications. Clin Neurol Neurosurg 111:835–839CrossRefPubMedGoogle Scholar
  11. 11.
    Skog J, Wurdinger T, van Rijn S, Meijer DH, Gainche L et al (2008) Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol 10:1470–1476CrossRefPubMedCentralPubMedGoogle Scholar
  12. 12.
    Akers JC, Ramakrishnan V, Kim R, Skog J, Nakano I et al (2013) MiR-21 in the extracellular vesicles (EVs) of cerebrospinal fluid (CSF): a platform for glioblastoma biomarker development. PLoS One 8:e78115CrossRefPubMedCentralPubMedGoogle Scholar
  13. 13.
    Chen WW, Balaj L, Liau LM, Samuels ML, Kotsopoulos SK et al (2013) BEAMing and droplet digital PCR analysis of mutant IDH1 mRNA in glioma patient serum and cerebrospinal fluid extracellular vesicles. Mol Ther Nucleic Acids 2:e109CrossRefPubMedCentralPubMedGoogle Scholar
  14. 14.
    Zhang W, Zhang J, Yan W, You G, Bao Z et al (2013) Whole-genome microRNA expression profiling identifies a 5-microRNA signature as a prognostic biomarker in Chinese patients with primary glioblastoma multiforme. Cancer 119:814–824CrossRefPubMedGoogle Scholar
  15. 15.
    Zhang W, Zhang J, Hoadley K, Kushwaha D, Ramakrishnan V et al (2012) miR-181d: a predictive glioblastoma biomarker that downregulates MGMT expression. Neuro-Oncology 14:712–719CrossRefPubMedCentralPubMedGoogle Scholar
  16. 16.
    Kushwaha D, Ramakrishnan V, Ng K, Steed T, Nguyen T et al (2014) A genome-wide miRNA screen revealed miR-603 as a MGMT-regulating miRNA in glioblastomas. Oncotarget 5:4026–4039PubMedCentralPubMedGoogle Scholar
  17. 17.
    Shifrin DA Jr, Demory Beckler M, Coffey RJ, Tyska MJ (2013) Extracellular vesicles: communication, coercion, and conditioning. Mol Biol Cell 24:1253–1259CrossRefPubMedCentralPubMedGoogle Scholar
  18. 18.
    Street J, Barran P, Mackay CL, Weidt S, Balmforth C et al (2012) Identification and proteomic profiling of exosomes in human cerebrospinal fluid. J Trans Med 10:5CrossRefGoogle Scholar
  19. 19.
    Noerholm M, Balaj L, Limperg T, Salehi A, Zhu LD et al (2012) RNA expression patterns in serum microvesicles from patients with glioblastoma multiforme and controls. BMC Cancer 12:22CrossRefPubMedCentralPubMedGoogle Scholar
  20. 20.
    Blank A, Dekker CA (1981) Ribonucleases of human serum, urine, cerebrospinal fluid, and leukocytes. Activity staining following electrophoresis in sodium dodecyl sulfate-polyacrylamide gels. Biochemistry 20:2261–2267CrossRefPubMedGoogle Scholar
  21. 21.
    Shao H, Chung J, Balaj L, Charest A, Bigner DD et al (2012) Protein typing of circulating microvesicles allows real-time monitoring of glioblastoma therapy. Nat Med 18:1835–1840CrossRefPubMedCentralPubMedGoogle Scholar
  22. 22.
    Taylor DD, Gercel-Taylor C (2008) MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol Oncol 110:13–21CrossRefPubMedGoogle Scholar
  23. 23.
    Akers J, Gonda D, Kim R, Carter B, Chen C (2013) Biogenesis of extracellular vesicles (EV): exosomes, microvesicles, retrovirus-like vesicles, and apoptotic bodies. J Neuro-Oncology 113:1–11CrossRefGoogle Scholar
  24. 24.
    Bass DM, Baylor M, Chen C, Upadhyayula U (1995) Dansylcadaverine and cytochalasin D enhance rotavirus infection of murine L cells. Virology 212:429–437CrossRefPubMedGoogle Scholar
  25. 25.
    Camussi G, Deregibus MC, Bruno S, Grange C, Fonsato V et al (2011) Exosome/microvesicle-mediated epigenetic reprogramming of cells. Am J Cancer Res 1:98–110PubMedCentralPubMedGoogle Scholar
  26. 26.
    Johnstone RM (2006) Exosomes biological significance: a concise review. Blood Cells Mol Dis 36:315–321CrossRefPubMedGoogle Scholar
  27. 27.
    Booth AM, Fang Y, Fallon JK, Yang JM, Hildreth JE et al (2006) Exosomes and HIV Gag bud from endosome-like domains of the T cell plasma membrane. J Cell Biol 172:923–935CrossRefPubMedCentralPubMedGoogle Scholar
  28. 28.
    Gould SJ, Raposo G (2013) As we wait: coping with an imperfect nomenclature for extracellular vesicles. J Extracell Vesicles 2Google Scholar
  29. 29.
    Joshi K, Banasavadi-Siddegowda Y, Mo X, Kim SH, Mao P et al (2013) MELK-dependent FOXM1 Phosphorylation is Essential for Proliferation of Glioma Stem Cells. Stem Cells. 31(6):1051–1063CrossRefPubMedCentralPubMedGoogle Scholar
  30. 30.
    Ng K, Nitta M, Hu L, Kesari S, Kung A et al (2009) A small interference RNA screen revealed proteasome inhibition as strategy for glioblastoma therapy. Clin Neurosurg 56:107–118PubMedGoogle Scholar
  31. 31.
    Thery C, Amigorena S, Raposo G, Clayton A (2006) Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol 3:3–22Google Scholar
  32. 32.
    Jayachandran M, Miller VM, Heit JA, Owen WG (2012) Methodology for isolation, identification and characterization of microvesicles in peripheral blood. J Immunol Methods 375:207–214CrossRefPubMedCentralPubMedGoogle Scholar
  33. 33.
    Sokolova V, Ludwig AK, Hornung S, Rotan O, Horn PA et al (2011) Characterisation of exosomes derived from human cells by nanoparticle tracking analysis and scanning electron microscopy. Colloids Surf B Biointerfaces 87:146–150CrossRefPubMedGoogle Scholar
  34. 34.
    Trang P, Wiggins JF, Daige CL, Cho C, Omotola M et al (2011) Systemic delivery of tumor suppressor microRNA mimics using a neutral lipid emulsion inhibits lung tumors in mice. Mol Ther 19:1116–1122CrossRefPubMedCentralPubMedGoogle Scholar
  35. 35.
    Teplyuk NM, Mollenhauer B, Gabriely G, Giese A, Kim E et al (2012) MicroRNAs in cerebrospinal fluid identify glioblastoma and metastatic brain cancers and reflect disease activity. Neuro-Oncology 14:689–700CrossRefPubMedCentralPubMedGoogle Scholar
  36. 36.
    Grigorenko EV, Ortenberg E, Hurley J, Bond A, Munnelly K (2011) miRNA profiling on high-throughput OpenArray system. Methods Mol Biol 676:101–110PubMedGoogle Scholar
  37. 37.
    Eldh M, Lotvall J, Malmhall C, Ekstrom K (2012) Importance of RNA isolation methods for analysis of exosomal RNA: evaluation of different methods. Mol Immunol 50:278–286CrossRefPubMedGoogle Scholar
  38. 38.
    Schutzer SE, Liu T, Natelson BH, Angel TE, Schepmoes AA et al (2010) Establishing the proteome of normal human cerebrospinal fluid. PLoS One 5:e10980CrossRefPubMedCentralPubMedGoogle Scholar
  39. 39.
    Hu S, Loo JA, Wong DT (2006) Human body fluid proteome analysis. Proteomics 6:6326–6353CrossRefPubMedCentralPubMedGoogle Scholar
  40. 40.
    Mutungi G, Waters D, Ratliff J, Puglisi M, Clark RM et al (2010) Eggs distinctly modulate plasma carotenoid and lipoprotein subclasses in adult men following a carbohydrate-restricted diet. J Nutr Biochem 21:261–267CrossRefPubMedGoogle Scholar
  41. 41.
    Lapointe A, Couillard C, Lemieux S (2006) Effects of dietary factors on oxidation of low-density lipoprotein particles. J Nutr Biochem 17:645–658CrossRefPubMedGoogle Scholar
  42. 42.
    Witwer KW, Buzas EI, Bemis LT, Bora A, Lasser C et al (2013) Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. J Extracell Vesicles. doi:10.3402/jev.v2i0.20360 PubMedCentralPubMedGoogle Scholar
  43. 43.
    Parvas M, Parada C, Bueno D (2008) A blood-CSF barrier function controls embryonic CSF protein composition and homeostasis during early CNS development. Dev Biol 321:51–63CrossRefPubMedGoogle Scholar
  44. 44.
    Alegre E, Sanmamed MF, Rodriguez C, Carranza O, Martin-Algarra S et al (2014) Study of circulating microRNA-125b levels in serum exosomes in advanced melanoma. Arch Pathol Lab Med 138:828–832CrossRefPubMedGoogle Scholar
  45. 45.
    Crescitelli R, Lasser C, Szabo TG, Kittel A, Eldh M et al (2013) Distinct RNA profiles in subpopulations of extracellular vesicles: apoptotic bodies, microvesicles and exosomes. J Extracell Vesicles. doi:10.3402/jev.v2i0.20677 PubMedCentralPubMedGoogle Scholar
  46. 46.
    Salido-Guadarrama I, Romero-Cordoba S, Peralta-Zaragoza O, Hidalgo-Miranda A, Rodriguez-Dorantes M (2014) MicroRNAs transported by exosomes in body fluids as mediators of intercellular communication in cancer. Onco Targets Ther 7:1327–1338PubMedCentralPubMedGoogle Scholar
  47. 47.
    Pegtel DM, Cosmopoulos K, Thorley-Lawson DA, van Eijndhoven MA, Hopmans ES et al (2010) Functional delivery of viral miRNAs via exosomes. Proc Natl Acad Sci U S A 107:6328–6333CrossRefPubMedCentralPubMedGoogle Scholar
  48. 48.
    Yuan A, Farber EL, Rapoport AL, Tejada D, Deniskin R et al (2009) Transfer of microRNAs by embryonic stem cell microvesicles. PLoS One 4:e4722CrossRefPubMedCentralPubMedGoogle Scholar
  49. 49.
    Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ et al (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9:654–659CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Johnny C. Akers
    • 1
  • Valya Ramakrishnan
    • 1
  • Ryan Kim
    • 1
  • Shirley Phillips
    • 2
  • Vivek Kaimal
    • 2
  • Ying Mao
    • 3
  • Wei Hua
    • 3
  • Isaac Yang
    • 4
  • Chia-Chun Fu
    • 5
  • John Nolan
    • 6
  • Ichiro Nakano
    • 7
  • Yuanfan Yang
    • 8
  • Martin Beaulieu
    • 2
  • Bob S. Carter
    • 1
  • Clark C. Chen
    • 1
  1. 1.Center for Theoretical and Applied Neuro-OncologyUniversity of CaliforniaSan DiegoUSA
  2. 2.Regulus MicroMarkers™ Division of Regulus TherapeuticsSan DiegoUSA
  3. 3.Department of Neurosurgery, Huashan HospitalFudan UniversityShanghaiChina
  4. 4.Department of NeurosurgeryUniversity of CaliforniaLos AngelesUSA
  5. 5.Izon ScienceChristchurchNew Zealand
  6. 6.Scintillon Institute for Biomedical and Bioenergy ResearchSan DiegoUSA
  7. 7.Dardinger Laboratory for Neurosciences, Department of NeurosurgeryOhio State UniversityColumbusUSA
  8. 8.Peking Union Medical CenterBeijingChina

Personalised recommendations