Journal of Neuro-Oncology

, Volume 122, Issue 2, pp 229–244 | Cite as

The prognostic significance of serum and cerebrospinal fluid MMP-9, CCL2 and sVCAM-1 in leukemia CNS metastasis

  • Meng-Ya Si
  • Zhi-Cheng Fan
  • Ya-zhen Li
  • Xiao-Lan Chang
  • Qing-Dong Xie
  • Xiao-Yang Jiao
Laboratory Investigation


Metastasis to the central nervous system (CNS) is the primary obstacle in leukemia treatment. Matrix metalloproteinase-9 (MMP-9), chemokine ligand-2 (CCL2) and soluble vascular adhesion molecule-1 (sVCAM-1) play crucial roles in tumor cell adhesion, motivation and survival, but their roles in leukemia CNS metastasis remain to be elucidated. We investigated the prognostic significance of serum and cerebrospinal fluid (CSF) MMP-9, CCL2 and sVCAM-1 in leukemia patients to explore their potential as predictive biomarkers of the development of CNS leukemia (CNSL). MMP-9, CCL2 and sVCAM-1 were measured in paired CSF and serum samples collecting from 33 leukemia patients with or without CNS metastasis. Other risk factors related to CNSL prognosis were also analyzed. sVCAM-1Serum and CCL2Serum/CSF were significantly higher in the CNSL group than in the non-CNSL group and the controls (p < 0.05). MMP-9Serum was insignificantly lower in the CNSL group than in the non-CNSL group and the controls (p > 0.05). No differences were found for the sVCAM-1Serum, CCL2Serum, and MMP-9Serum levels between non-CNSL patients and controls (p > 0.05). MMP-9CSF was significantly higher in the CNSL group than both the non-CNSL and the control groups (p < 0.05). The indexes of sVCAM-1, CCL2, and MMP-9 in the CNSL group were lower than in the controls (p < 0.05). Positive correlations were determined between the MMP-9CSF and the ALBCSF/BBB value/WBCCSF, between sVCAM-1Serum and the WBCCSF/BBB value. Negative correlations existed between MMP-9Serum and the ALBCSF/BBB value/WBCCSF, and between the CCL2 index and ALBCSF. sVCAM-1Serum was positively associated with event-free survival (EFS), and patients with higher levels of ALBCSF, MMP-9CSF/Serum, CCL2CSF/Serum, and sVCAM-1CSF/Serum had shorter EFS. MMP-9CSF, CCL2CSF and sVCAM-1CSF are the first three principal components analyzed by cluster and principal component analysis. Our data suggest that MMP-9, CCL2 and sVCAM-1 in the CSF may be more potent than serum in predicting the possibility of leukemia metastatic CNS and the outcome of CNSL patients.


Leukemia CNS metastasis MMP-9 CCL2 sVCAM-1 



This study was funded by Natural Science Foundation of Guangdong Province, China (S2012030006289, NO9151008901000043), Science and Technology Program of Guangdong Province, China (Nos. 2010B031600321, and 2012B031800217).

Conflict of interest

We declare that we have no conflicts of interest.


  1. 1.
    Soto MS et al (2014) Functional role of endothelial adhesion molecules in the early stages of brain metastasis. Neuro Oncol 16(4):540–551CrossRefPubMedCentralPubMedGoogle Scholar
  2. 2.
    Lazarus HM et al (2006) Central nervous system involvement in adult acute lymphoblastic leukemia at diagnosis: results from the international ALL trial MRC UKALL XII/ECOG E2993. Blood 108(2):465–472CrossRefPubMedCentralPubMedGoogle Scholar
  3. 3.
    Law IP, Blom J (1976) Adult central nervous system leukemia: incidence and clinicopathologic features. South Med J 69(8):1054–1057CrossRefPubMedGoogle Scholar
  4. 4.
    Jabbour E et al (2010) Central nervous system prophylaxis in adults with acute lymphoblastic leukemia: current and emerging therapies. Cancer 116(10):2290–2300PubMedGoogle Scholar
  5. 5.
    Huber JD, Egleton RD, Davis TP (2001) Molecular physiology and pathophysiology of tight junctions in the blood-brain barrier. Trends Neurosci 24(12):719–725CrossRefPubMedGoogle Scholar
  6. 6.
    Ransohoff RM, Kivisakk P, Kidd G (2003) Three or more routes for leukocyte migration into the central nervous system. Nat Rev Immunol 3(7):569–581CrossRefPubMedGoogle Scholar
  7. 7.
    Hickey WF (1999) Leukocyte traffic in the central nervous system: the participants and their roles. Semin Immunol 11(2):125–137CrossRefPubMedGoogle Scholar
  8. 8.
    Price JT, Thompson EW (2002) Mechanisms of tumour invasion and metastasis: emerging targets for therapy. Expert Opin Ther Targets 6(2):217–233CrossRefPubMedGoogle Scholar
  9. 9.
    Izraely S et al (2010) Chemokine-chemokine receptor axes in melanoma brain metastasis. Immunol Lett 130(1–2):107–114CrossRefPubMedGoogle Scholar
  10. 10.
    Frenette PS, Wagner DD (1996) Adhesion molecules—Part 1. N Engl J Med 334(23):1526–1529CrossRefPubMedGoogle Scholar
  11. 11.
    Frenette PS, Wagner DD (1996) Adhesion molecules–Part II: blood vessels and blood cells. N Engl J Med 335(1):43–45CrossRefPubMedGoogle Scholar
  12. 12.
    Alexiou D et al (2001) Serum levels of E-selectin, ICAM-1 and VCAM-1 in colorectal cancer patients: correlations with clinicopathological features, patient survival and tumour surgery. Eur J Cancer 37(18):2392–2397CrossRefPubMedGoogle Scholar
  13. 13.
    Christiansen I et al (1999) Serum levels of soluble vascular cell adhesion molecule-1 (sVCAM-1) are elevated in advanced stages of non-Hodgkin’s lymphomas. Eur J Haematol 62(3):202–209CrossRefPubMedGoogle Scholar
  14. 14.
    Hatzistilianou M et al (1997) Circulating soluble adhesion molecule levels in children with acute lymphoblastic leukaemia. Eur J Pediatr 156(7):537–540CrossRefPubMedGoogle Scholar
  15. 15.
    Valastyan S, Weinberg RA (2011) Tumor metastasis: molecular insights and evolving paradigms. Cell 147(2):275–292CrossRefPubMedCentralPubMedGoogle Scholar
  16. 16.
    Yilmaz M, Christofori G, Lehembre F (2007) Distinct mechanisms of tumor invasion and metastasis. Trends Mol Med 13(12):535–541CrossRefPubMedGoogle Scholar
  17. 17.
    Basu SK et al (2014) Breaking and entering into the CNS: clues from solid tumor and nonmalignant models with relevance to hematopoietic malignancies. Clin Exp Metastasis 31(2):257–267CrossRefPubMedGoogle Scholar
  18. 18.
    Feng S et al (2011) Matrix metalloproteinase-2 and -9 secreted by leukemic cells increase the permeability of blood-brain barrier by disrupting tight junction proteins. PLoS One 6(8):e20599CrossRefPubMedCentralPubMedGoogle Scholar
  19. 19.
    Burgess M et al (2012) CCL2 and CXCL2 enhance survival of primary chronic lymphocytic leukemia cells in vitro. Leuk Lymphoma 53(10):1988–1998CrossRefPubMedGoogle Scholar
  20. 20.
    Eugenin EA et al (2006) CCL2/monocyte chemoattractant protein-1 mediates enhanced transmigration of human immunodeficiency virus (HIV)-infected leukocytes across the blood-brain barrier: a potential mechanism of HIV-CNS invasion and NeuroAIDS. J Neurosci 26(4):1098–1106CrossRefPubMedGoogle Scholar
  21. 21.
    Schilling M et al (2009) Effects of monocyte chemoattractant protein 1 on blood-borne cell recruitment after transient focal cerebral ischemia in mice. Neuroscience 161(3):806–812CrossRefPubMedGoogle Scholar
  22. 22.
    Eisenkraft A et al (2006) MCP-1 in the cerebrospinal fluid of children with acute lymphoblastic leukemia. Leuk Res 30(10):1259–1261CrossRefPubMedGoogle Scholar
  23. 23.
    Civini S et al (2013) Leukemia cells induce changes in human bone marrow stromal cells. J Transl Med 11:298CrossRefPubMedCentralPubMedGoogle Scholar
  24. 24.
    Syrigos KN et al (2004) Prognostic significance of soluble adhesion molecules in Hodgkin’s disease. Anticancer Res 24(2C):1243–1247PubMedGoogle Scholar
  25. 25.
    Velikova G et al (1998) Serum concentrations of soluble adhesion molecules in patients with colorectal cancer. Br J Cancer 77(11):1857–1863CrossRefPubMedCentralPubMedGoogle Scholar
  26. 26.
    Nakata B et al (2000) Clinical significance of serum soluble intercellular adhesion molecule 1 in gastric cancer. Clin Cancer Res 6(3):1175–1179PubMedGoogle Scholar
  27. 27.
    Wang WL et al (2013) Concomitantly elevated serum matrix metalloproteinases 3 and 9 can predict survival of synchronous squamous cell carcinoma of the upper aero-digestive tract. Mol Carcinog 52(6):438–445CrossRefPubMedGoogle Scholar
  28. 28.
    Pranzatelli MR et al (2012) Key role of CXCL13/CXCR5 axis for cerebrospinal fluid B cell recruitment in pediatric OMS. J Neuroimmunol 243(1–2):81–88CrossRefPubMedGoogle Scholar
  29. 29.
    Tang YT et al (2013) Expression and significance of vascular endothelial growth factor A and C in leukemia central nervous system metastasis. Leuk Res 37(4):359–366CrossRefPubMedGoogle Scholar
  30. 30.
    Tang YT et al (2013) The soluble VEGF receptor 1 and 2 expression in cerebral spinal fluid as an indicator for leukemia central nervous system metastasis. J Neurooncol 112(3):329–338CrossRefPubMedGoogle Scholar
  31. 31.
    Mastrangelo R et al (1986) Report and recommendations of the Rome workshop concerning poor-prognosis acute lymphoblastic leukemia in children: biologic bases for staging, stratification, and treatment. Med Pediatr Oncol 14(3):191–194CrossRefPubMedGoogle Scholar
  32. 32.
    van der Flier M et al (2001) Vascular endothelial growth factor in bacterial meningitis: detection in cerebrospinal fluid and localization in postmortem brain. J Infect Dis 183(1):149–153CrossRefPubMedGoogle Scholar
  33. 33.
    Sargent DJ et al (2005) Disease-free survival versus overall survival as a primary end point for adjuvant colon cancer studies: individual patient data from 20,898 patients on 18 randomized trials. J Clin Oncol 23(34):8664–8670CrossRefPubMedGoogle Scholar
  34. 34.
    Kainerstorfer JM et al (2013) Evaluation of non-invasive multispectral imaging as a tool for measuring the effect of systemic therapy in Kaposi sarcoma. PLoS One 8(12):e83887CrossRefPubMedCentralPubMedGoogle Scholar
  35. 35.
    Sturgeon CM et al (2008) National Academy of clinical biochemistry laboratory medicine practice guidelines for use of tumor markers in testicular, prostate, colorectal, breast, and ovarian cancers. Clin Chem 54(12):e11–e79CrossRefPubMedGoogle Scholar
  36. 36.
    Glantz MJ et al (1998) Cerebrospinal fluid cytology in patients with cancer: minimizing false-negative results. Cancer 82(4):733–739CrossRefPubMedGoogle Scholar
  37. 37.
    Moriarty AT et al (1993) Immunophenotyping of cytologic specimens by flow cytometry. Diagn Cytopathol 9(3):252–258CrossRefPubMedGoogle Scholar
  38. 38.
    Mavlight GM et al (1980) Diagnosis of leukemia or lymphoma in the central nervous system by beta 2-microglobulin determination. N Engl J Med 303(13):718–722CrossRefPubMedGoogle Scholar
  39. 39.
    Rajantie J et al (1989) CSF fibronectin in Burkitt’s lymphoma: an early marker for CNS involvement. Eur J Haematol 42(3):313–314CrossRefPubMedGoogle Scholar
  40. 40.
    Weller M et al (1991) Comparative analysis of cytokine patterns in immunological, infectious, and oncological neurological disorders. J Neurol Sci 104(2):215–221CrossRefPubMedGoogle Scholar
  41. 41.
    Hegde U et al (2005) High incidence of occult leptomeningeal disease detected by flow cytometry in newly diagnosed aggressive B-cell lymphomas at risk for central nervous system involvement: the role of flow cytometry versus cytology. Blood 105(2):496–502CrossRefPubMedGoogle Scholar
  42. 42.
    Van Etten RA (2007) Aberrant cytokine signaling in leukemia. Oncogene 26(47):6738–6749CrossRefPubMedCentralPubMedGoogle Scholar
  43. 43.
    Kornblau SM et al (2010) Recurrent expression signatures of cytokines and chemokines are present and are independently prognostic in acute myelogenous leukemia and myelodysplasia. Blood 116(20):4251–4261CrossRefPubMedCentralPubMedGoogle Scholar
  44. 44.
    Lorger M et al (2011) Comparison of in vitro and in vivo approaches to studying brain colonization by breast cancer cells. J Neurooncol 104(3):689–696CrossRefPubMedGoogle Scholar
  45. 45.
    Sawada T et al (2006) TGF-beta1 down-regulates ICAM-1 expression and enhances liver metastasis of pancreatic cancer. Adv Med Sci 51:60–65PubMedGoogle Scholar
  46. 46.
    Sawa Y et al (2008) LPS-induced IL-6, IL-8, VCAM-1, and ICAM-1 expression in human lymphatic endothelium. J Histochem Cytochem 56(2):97–109CrossRefPubMedCentralPubMedGoogle Scholar
  47. 47.
    Prinz M, Priller J (2010) Tickets to the brain: role of CCR2 and CX3CR1 in myeloid cell entry in the CNS. J Neuroimmunol 224(1–2):80–84CrossRefPubMedGoogle Scholar
  48. 48.
    Selenica ML et al (2013) Diverse activation of microglia by chemokine (C-C motif) ligand 2 overexpression in brain. J Neuroinflammation 10:86CrossRefPubMedCentralPubMedGoogle Scholar
  49. 49.
    Huang DR et al (2001) Absence of monocyte chemoattractant protein 1 in mice leads to decreased local macrophage recruitment and antigen-specific T helper cell type 1 immune response in experimental autoimmune encephalomyelitis. J Exp Med 193(6):713–726CrossRefPubMedCentralPubMedGoogle Scholar
  50. 50.
    Berman JW et al (1996) Localization of monocyte chemoattractant peptide-1 expression in the central nervous system in experimental autoimmune encephalomyelitis and trauma in the rat. J Immunol 156(8):3017–3023PubMedGoogle Scholar
  51. 51.
    Mastroianni CM et al (1998) Chemokine profiles in the cerebrospinal fluid (CSF) during the course of pyogenic and tuberculous meningitis. Clin Exp Immunol 114(2):210–214CrossRefPubMedCentralPubMedGoogle Scholar
  52. 52.
    Edwards KR et al (2013) Feasibility of the use of combinatorial chemokine arrays to study blood and CSF in multiple sclerosis. PLoS One 8(11):e81007CrossRefPubMedCentralPubMedGoogle Scholar
  53. 53.
    Stockhammer G et al (2000) Vascular endothelial growth factor in CSF: a biological marker for carcinomatous meningitis. Neurology 54(8):1670–1676CrossRefPubMedGoogle Scholar
  54. 54.
    Banisadr G et al (2005) Highly regionalized neuronal expression of monocyte chemoattractant protein-1 (MCP-1/CCL2) in rat brain: evidence for its colocalization with neurotransmitters and neuropeptides. J Comp Neurol 489(3):275–292CrossRefPubMedGoogle Scholar
  55. 55.
    Gerard C, Rollins BJ (2001) Chemokines and disease. Nat Immunol 2(2):108–115CrossRefPubMedGoogle Scholar
  56. 56.
    Biber K, Vinet J, Boddeke HW (2008) Neuron-microglia signaling: chemokines as versatile messengers. J Neuroimmunol 198(1–2):69–74CrossRefPubMedGoogle Scholar
  57. 57.
    Yang G et al (2011) Neuronal MCP-1 mediates microglia recruitment and neurodegeneration induced by the mild impairment of oxidative metabolism. Brain Pathol 21(3):279–297CrossRefPubMedCentralPubMedGoogle Scholar
  58. 58.
    Mathieu P et al (2010) The more you have, the less you get: the functional role of inflammation on neuronal differentiation of endogenous and transplanted neural stem cells in the adult brain. J Neurochem 112(6):1368–1385CrossRefPubMedGoogle Scholar
  59. 59.
    Langert KA, Von Zee CL, Stubbs EB Jr (2013) Cdc42 GTPases facilitate TNF-alpha-mediated secretion of CCL2 from peripheral nerve microvascular endoneurial endothelial cells. J Peripher Nerv Syst 18(3):199–208CrossRefPubMedCentralPubMedGoogle Scholar
  60. 60.
    Martin TA, Jiang WG (2009) Loss of tight junction barrier function and its role in cancer metastasis. Biochim Biophys Acta 1788(4):872–891CrossRefPubMedGoogle Scholar
  61. 61.
    Marcato P et al (2011) Aldehyde dehydrogenase activity of breast cancer stem cells is primarily due to isoform ALDH1A3 and its expression is predictive of metastasis. Stem Cells 29(1):32–45CrossRefPubMedGoogle Scholar
  62. 62.
    Quintana E et al (2008) Efficient tumour formation by single human melanoma cells. Nature 456(7222):593–598CrossRefPubMedCentralPubMedGoogle Scholar
  63. 63.
    Engsig MT et al (2000) Matrix metalloproteinase 9 and vascular endothelial growth factor are essential for osteoclast recruitment into developing long bones. J Cell Biol 151(4):879–889CrossRefPubMedCentralPubMedGoogle Scholar
  64. 64.
    Shuman Moss LA, Jensen-Taubman S, Stetler-Stevenson WG (2012) Matrix metalloproteinases: changing roles in tumor progression and metastasis. Am J Pathol 181(6):1895–1899CrossRefPubMedCentralPubMedGoogle Scholar
  65. 65.
    Ram M, Sherer Y, Shoenfeld Y (2006) Matrix metalloproteinase-9 and autoimmune diseases. J Clin Immunol 26(4):299–307CrossRefPubMedGoogle Scholar
  66. 66.
    Grossetete M et al (2009) Elevation of matrix metalloproteinases 3 and 9 in cerebrospinal fluid and blood in patients with severe traumatic brain injury. Neurosurgery 65(4):702–708CrossRefPubMedCentralPubMedGoogle Scholar
  67. 67.
    Wong ET et al (2008) Cerebrospinal fluid matrix metalloproteinase-9 increases during treatment of recurrent malignant gliomas. Cerebrospinal Fluid Res 5:1CrossRefPubMedCentralPubMedGoogle Scholar
  68. 68.
    Kim JG et al (2005) Clinical implications of angiogenic factors in patients with acute or chronic leukemia: hepatocyte growth factor levels have prognostic impact, especially in patients with acute myeloid leukemia. Leuk Lymphoma 46(6):885–891CrossRefPubMedGoogle Scholar
  69. 69.
    Strazielle N et al (2003) Pro-inflammatory cytokines modulate matrix metalloproteinase secretion and organic anion transport at the blood-cerebrospinal fluid barrier. J Neuropathol Exp Neurol 62(12):1254–1264PubMedGoogle Scholar
  70. 70.
    Coussens LM et al (2000) MMP-9 supplied by bone marrow-derived cells contributes to skin carcinogenesis. Cell 103(3):481–490CrossRefPubMedCentralPubMedGoogle Scholar
  71. 71.
    Burlingame AL, Stults JT (2012) Mass spectrometry: reconnaissance at the Frontiers of biology. Mol Cell Proteomics 11(5):1–2CrossRefPubMedCentralPubMedGoogle Scholar
  72. 72.
    Gilburd B et al (2004) Autoantibodies profile in the sera of patients with Sjogren’s syndrome: the ANA evaluation–a homogeneous, multiplexed system. Clin Dev Immunol 11(1):53–56CrossRefPubMedCentralPubMedGoogle Scholar
  73. 73.
    Brandsma D et al (2006) CSF protein profiling using multiplex immuno-assay: a potential new diagnostic tool for leptomeningeal metastases. J Neurol 253(9):1177–1184CrossRefPubMedGoogle Scholar
  74. 74.
    Franciotta D et al (2006) Cytokines and chemokines in cerebrospinal fluid and serum of adult patients with acute disseminated encephalomyelitis. J Neurol Sci 247(2):202–207CrossRefPubMedGoogle Scholar
  75. 75.
    Bruserud O et al (2007) Subclassification of patients with acute myelogenous leukemia based on chemokine responsiveness and constitutive chemokine release by their leukemic cells. Haematologica 92(3):332–341CrossRefPubMedGoogle Scholar
  76. 76.
    Li H, et al (2014) A systematic review of matrix metalloproteinase 9 as a biomarker of survival in patients with osteosarcoma. Tumour Biol 35:5487–91Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Meng-Ya Si
    • 1
  • Zhi-Cheng Fan
    • 1
  • Ya-zhen Li
    • 1
  • Xiao-Lan Chang
    • 1
    • 2
  • Qing-Dong Xie
    • 1
    • 2
  • Xiao-Yang Jiao
    • 1
    • 2
  1. 1.Department of Cell Biology and GeneticsShantou University Medical CollegeShantouChina
  2. 2.Department of Cell Biology and Genetics, Key Laboratory of Molecular Biology in High Cancer Incidence Coastal ChaoShan Area of Guangdong Higher Education InstitutesShantou University Medical CollegeShantouChina

Personalised recommendations