Journal of Neuro-Oncology

, Volume 121, Issue 2, pp 319–329 | Cite as

Dendritic cell vaccination combined with temozolomide retreatment: results of a phase I trial in patients with recurrent glioblastoma multiforme

  • Martin K. HunnEmail author
  • Evelyn Bauer
  • Catherine E. Wood
  • Olivier Gasser
  • Marina Dzhelali
  • Lindsay R. Ancelet
  • Brigitta Mester
  • Katrina J. Sharples
  • Michael P. Findlay
  • David A. Hamilton
  • Ian F. Hermans
Clinical Study


There is no standard treatment for recurrent glioblastoma multiforme (GBM). Retreatment with temozolomide (TMZ) is one treatment option. We reasoned this could be more effective if combined with a vaccine that preferentially targeted TMZ-resistant cells. To test the feasibility and safety of such an approach, a phase 1 trial was conducted in which patients with GBM tumors relapsing after standard chemoradiotherapy were retreated with TMZ in combination with a vaccine consisting of monocyte-derived dendritic cells (DC) pulsed with autologous tumor cells that had previously been exposed to TMZ in vivo in the course of primary treatment. Of 14 participants, nine patients completed the initial phase of priming vaccinations and two cycles of TMZ, one proved to have radionecrosis, one rapidly progressed, and in three the yield of DC vaccine was insufficient to proceed with treatment. Other than expected toxicities related to TMZ, there were no adverse events attributable to the combined treatment. Two patients had objective radiological responses. Six month progression-free survival was 22 %, similar to retreatment with TMZ alone. Anti-tumor immune responses were assessed in peripheral blood mononuclear cells using interferon-γ ELISpot, with two patients meeting criteria for a vaccine-induced immune response, one of whom remained disease-free for nearly three years. Another patient with an anti-tumor immune response at baseline that was sustained post-vaccination experienced a 12-month period of progression-free survival. In summary, the combined treatment was safe and well-tolerated but feasibility in the recurrent setting was marginal. Evidence of immune responses in a few patients broadly correlated with better clinical outcome.


Glioblastoma multiforme Dendritic cell-based vaccination Temozolomide T cells Chemoresistance Combination therapy 



This study was funded by the Cancer Society of New Zealand (Grant 07/143B) with support from the New Zealand Health Research Council (Clinical Fellowship to M.K.H.), the Royal Australasian College of Surgeons (to M.K.H.) and the Surgical Research Trust (to M.K.H.). In addition, the authors wish to acknowledge John Denton and Melanie McConnell for their expert advice, and the New Zealand neurosurgeons and oncologists who supported this study.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11060_2014_1635_MOESM1_ESM.pdf (80 kb)
Supplementary material 1 (PDF 80 kb)
11060_2014_1635_MOESM2_ESM.pdf (49 kb)
Supplementary material 2 (PDF 48 kb)
11060_2014_1635_MOESM3_ESM.pdf (40 kb)
Supplementary material 3 (PDF 40 kb)
11060_2014_1635_MOESM4_ESM.pdf (54 kb)
Supplementary material 4 (PDF 53 kb)
11060_2014_1635_MOESM5_ESM.pdf (50 kb)
Supplementary material 5 (PDF 50 kb)
11060_2014_1635_MOESM6_ESM.pdf (60 kb)
Supplementary material 6 (PDF 59 kb)
11060_2014_1635_MOESM7_ESM.pdf (382 kb)
Supplementary material 7 (PDF 382 kb)
11060_2014_1635_MOESM8_ESM.pdf (210 kb)
Supplementary material 8 (PDF 209 kb)


  1. 1.
    Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJB, Belanger K, Brandes AA, Marosi C, Bogdahn U, Curschmann J, Janzer RC, Ludwin SK, Gorlia T, Allgeier A, Lacombe D, Cairncross JG, Eisenhauer E, Mirimanoff RO (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352(10):987–996. doi: 10.1056/NEJMoa043330 PubMedCrossRefGoogle Scholar
  2. 2.
    Chen C, Xu T, Lu Y, Chen J, Wu S (2013) The efficacy of temozolomide for recurrent glioblastoma multiforme. Eur J Neurol 20(2):223–230. doi: 10.1111/j.1468-1331.2012.03778.x PubMedCrossRefGoogle Scholar
  3. 3.
    Perry JR, Bélanger K, Mason WP, Fulton D, Kavan P, Easaw J, Shields C, Kirby S, Macdonald DR, Eisenstat DD, Thiessen B, Forsyth P, Pouliot J-F (2010) Phase II trial of continuous dose-intense temozolomide in recurrent malignant glioma: RESCUE study. J Clin Oncol 28(12):2051–2057. doi: 10.1200/JCO.2009.26.5520 PubMedCrossRefGoogle Scholar
  4. 4.
    Franceschi E, Omuro AMP, Lassman AB, Demopoulos A, Nolan C, Abrey LE (2005) Salvage temozolomide for prior temozolomide responders. Cancer 104(11):2473–2476. doi: 10.1002/cncr.21564 PubMedCrossRefGoogle Scholar
  5. 5.
    Wick A, Pascher C, Wick W, Jauch T, Weller M, Bogdahn U, Hau P (2009) Rechallenge with temozolomide in patients with recurrent gliomas. J Neurol 256(5):734–741. doi: 10.1007/s00415-009-5006-9 PubMedCrossRefGoogle Scholar
  6. 6.
    Vauleon E, Avril T, Collet B, Mosser J, Quillien V (2010) Overview of cellular immunotherapy for patients with glioblastoma. Clin Dev Immunol 2010:1–18. doi: 10.1155/2010/689171 CrossRefGoogle Scholar
  7. 7.
    Xu X, Stockhammer F, Schmitt M (2012) Cellular-based immunotherapies for patients with glioblastoma multiforme. Clin Dev Immunol 2012:764213. doi: 10.1155/2012/764213 PubMedCentralPubMedGoogle Scholar
  8. 8.
    Wheeler CJ, Das A, Liu G, Yu JS, Black KL (2004) Clinical responsiveness of glioblastoma multiforme to chemotherapy after vaccination. Clin Cancer Res 10(16):5316–5326. doi: 10.1158/1078-0432.CCR-04-0497 PubMedCrossRefGoogle Scholar
  9. 9.
    Ramakrishnan R, Antonia S, Gabrilovich DI (2008) Combined modality immunotherapy and chemotherapy: a new perspective. Cancer Immunol Immunother 57(10):1523–1529. doi: 10.1007/s00262-008-0531-4 PubMedCrossRefGoogle Scholar
  10. 10.
    Natsume A, Ishii D, Wakabayashi T, Tsuno T, Hatano H, Mizuno M, Yoshida J (2005) IFN-beta down-regulates the expression of DNA repair gene MGMT and sensitizes resistant glioma cells to temozolomide. Cancer Res 65(17):7573–7579. doi: 10.1158/0008-5472.CAN-05-0036 PubMedGoogle Scholar
  11. 11.
    Radfar S, Wang Y, Khong HT (2009) Activated CD4 + T cells dramatically enhance chemotherapeutic tumor responses in vitro and in vivo. J Immunol 183(10):6800–6807. doi: 10.4049/jimmunol.0901747 PubMedCrossRefGoogle Scholar
  12. 12.
    Liu G, Khong HT, Wheeler CJ, Yu JS, Black KL, Ying H (2003) Molecular and functional analysis of tyrosinase-related protein (TRP)-2 as a cytotoxic T lymphocyte target in patients with malignant glioma. J Immunother 26(4):301–312PubMedCrossRefGoogle Scholar
  13. 13.
    Chi DD, Merchant RE, Rand R, Conrad AJ, Garrison D, Turner R, Morton DL, Hoon DS (1997) Molecular detection of tumor-associated antigens shared by human cutaneous melanomas and gliomas. Am J Pathol 150(6):2143–2152PubMedCentralPubMedGoogle Scholar
  14. 14.
    Chu W, Pak BJ, Bani MR, Kapoor M, Lu SJ, Tamir A, Kerbel RS, Ben-David Y (2000) Tyrosinase-related protein 2 as a mediator of melanoma specific resistance to cis-diamminedichloroplatinum(II): therapeutic implications. Oncogene 19(3):395–402. doi: 10.1038/sj.onc.1203315 PubMedCrossRefGoogle Scholar
  15. 15.
    Pak BJ, Chu W, Lu SJ, Kerbel RS, Ben-David Y (2001) Lineage-specific mechanism of drug and radiation resistance in melanoma mediated by tyrosinase-related protein 2. Cancer Metastasis Rev 20(1–2):27–32PubMedCrossRefGoogle Scholar
  16. 16.
    Nishioka E, Funasaka Y, Kondoh H, Chakraborty AK, Mishima Y, Ichihashi M (1999) Expression of tyrosinase, TRP-1 and TRP-2 in ultraviolet-irradiated human melanomas and melanocytes: TRP-2 protects melanoma cells from ultraviolet B induced apoptosis. Melanoma Res 9(5):433–443PubMedCrossRefGoogle Scholar
  17. 17.
    Liu G, Akasaki Y, Khong HT, Wheeler CJ, Das A, Black KL, Yu JS (2005) Cytotoxic T cell targeting of TRP-2 sensitizes human malignant glioma to chemotherapy. Oncogene 24(33):5226–5234. doi: 10.1038/sj.onc.1208519 PubMedCrossRefGoogle Scholar
  18. 18.
    Chakravarti A, Noll E, Black PM, Finkelstein DF, Finkelstein DM, Dyson NJ, Loeffler JS (2002) Quantitatively determined survivin expression levels are of prognostic value in human gliomas. J Clin Oncol 20(4):1063–1068PubMedCrossRefGoogle Scholar
  19. 19.
    Preusser M, Gelpi E, Matej R, Marosi C, Dieckmann K, Rössler K, Budka H, Hainfellner JA (2005) No prognostic impact of survivin expression in glioblastoma. Acta Neuropathol 109(5):534–538. doi: 10.1007/s00401-005-0992-x PubMedCrossRefGoogle Scholar
  20. 20.
    Ciesielski MJ, Ahluwalia MS, Munich SA, Orton M, Barone T, Chanan-Khan A, Fenstermaker RA (2010) Antitumor cytotoxic T-cell response induced by a survivin peptide mimic. Cancer Immunol Immunother 59(8):1211–1221. doi: 10.1007/s00262-010-0845-x PubMedCrossRefGoogle Scholar
  21. 21.
    Choi BD, Archer GE, Mitchell DA, Heimberger AB, Mclendon RE, Bigner DD, Sampson JH (2009) EGFRvIII-targeted vaccination therapy of malignant glioma. Brain Pathol 19(4):713–723. doi: 10.1111/j.1750-3639.2009.00318.x PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Romani N, Reider D, Heuer M, Ebner S, Kämpgen E, Eibl B, Niederwieser D, Schuler G (1996) Generation of mature dendritic cells from human blood. An improved method with special regard to clinical applicability. J Immunol Methods 196(2):137–151PubMedCrossRefGoogle Scholar
  23. 23.
    O’Rourke MGE, Johnson M, Lanagan C, See J, Yang J, Bell JR, Slater GJ, Kerr BM, Crowe B, Purdie DM, Elliott SL, Ellem KAO, Schmidt CW (2003) Durable complete clinical responses in a phase I/II trial using an autologous melanoma cell/dendritic cell vaccine. Cancer Immunol Immunother 52(6):387–395. doi: 10.1007/s00262-003-0375-x PubMedGoogle Scholar
  24. 24.
    Shah GD, Kesari S, Xu R, Batchelor TT, O’Neill AM, Hochberg FH, Levy B, Bradshaw J, Wen PY (2006) Comparison of linear and volumetric criteria in assessing tumor response in adult high-grade gliomas. Neuro-Oncology 8(1):38–46. doi: 10.1215/S1522851705000529 PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Miller AB, Hoogstraten B, Staquet M, Winkler A (1981) Reporting results of cancer treatment. Cancer 47(1):207–214PubMedCrossRefGoogle Scholar
  26. 26.
    Bartholomae WC, Rininsland FH, Eisenberg JC, Boehm BO, Lehmann PV, Tary-Lehmann M (2004) T cell immunity induced by live, necrotic, and apoptotic tumor cells. J Immunol 173(2):1012–1022PubMedCrossRefGoogle Scholar
  27. 27.
    Chamberlain MC, Glantz MJ, Chalmers L, Van Horn A, Sloan AE (2007) Early necrosis following concurrent Temodar and radiotherapy in patients with glioblastoma. J Neurooncol 82(1):81–83. doi: 10.1007/s11060-006-9241-y PubMedCrossRefGoogle Scholar
  28. 28.
    Kimura T, McKolanis JR, Dzubinski LA, Islam K, Potter DM, Salazar AM, Schoen RE, Finn OJ (2013) MUC1 vaccine for individuals with advanced adenoma of the colon: a cancer immunoprevention feasibility study. Cancer Prev Res (Phila) 6(1):18–26. doi: 10.1158/1940-6207.CAPR-12-0275 CrossRefGoogle Scholar
  29. 29.
    Bauer M, Goldstein M, Heylmann D, Kaina B (2012) Human monocytes undergo excessive apoptosis following temozolomide activating the ATM/ATR pathway while dendritic cells and macrophages are resistant. PLoS One 7(6):e39956. doi: 10.1371/journal.pone.0039956 PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Schmidt M, Pauels HG, Lügering N, Lügering A, Domschke W, Kucharzik T (1999) Glucocorticoids induce apoptosis in human monocytes: potential role of IL-1 beta. J Immunol 163(6):3484–3490PubMedGoogle Scholar
  31. 31.
    Ogden AT, Horgan D, Waziri A, Anderson D, Louca J, Mckhann GM, Sisti MB, Parsa AT, Bruce JN (2006) Defective receptor expression and dendritic cell differentiation of monocytes in glioblastomas. Neurosurgery 59(4):902–910. doi: 10.1227/01.NEU.0000233907.03070.7B PubMedCrossRefGoogle Scholar
  32. 32.
    Curran WJ, Scott CB, Horton J, Nelson JS, Weinstein AS, Fischbach AJ, Chang CH, Rotman M, Asbell SO, Krisch RE (1993) Recursive partitioning analysis of prognostic factors in three radiation therapy oncology group malignant glioma trials. J Natl Cancer Inst 85(9):704–710PubMedCrossRefGoogle Scholar
  33. 33.
    Paravati AJ, Heron DE, Landsittel D, Flickinger JC, Mintz A, Chen Y-F, Huq MS (2011) Radiotherapy and temozolomide for newly diagnosed glioblastoma and anaplastic astrocytoma: validation of radiation therapy oncology group-recursive partitioning analysis in the IMRT and temozolomide era. J Neurooncol 104(1):339–349. doi: 10.1007/s11060-010-0499-8 PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    De Vleeschouwer S, Ardon H, Van Calenbergh F, Sciot R, Wilms G, Van Loon J, Goffin J, Van Gool S (2012) Stratification according to HGG-IMMUNO RPA model predicts outcome in a large group of patients with relapsed malignant glioma treated by adjuvant postoperative dendritic cell vaccination. Cancer Immunol Immunother 61(11):2105–2112. doi: 10.1007/s00262-012-1271-z PubMedCrossRefGoogle Scholar
  35. 35.
    Liau LM, Prins RM, Kiertscher SM, Odesa SK, Kremen TJ, Giovannone AJ, Lin J-W, Chute DJ, Mischel PS, Cloughesy TF, Roth MD (2005) Dendritic cell vaccination in glioblastoma patients induces systemic and intracranial T-cell responses modulated by the local central nervous system tumor microenvironment. Clin Cancer Res 11(15):5515–5525. doi: 10.1158/1078-0432.CCR-05-0464 PubMedCrossRefGoogle Scholar
  36. 36.
    Sampson JH, Aldape KD, Archer GE, Coan A, Desjardins A, Friedman AH, Friedman HS, Gilbert MR, Herndon JE, Mclendon RE, Mitchell DA, Reardon DA, Sawaya R, Schmittling R, Shi W, Vredenburgh JJ, Bigner DD, Heimberger AB (2011) Greater chemotherapy-induced lymphopenia enhances tumor-specific immune responses that eliminate EGFRvIII-expressing tumor cells in patients with glioblastoma. Neuro-Oncology 13(3):324–333. doi: 10.1093/neuonc/noq157 PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Kim C-H, Woo S-J, Park J-S, Kim H-S, Park M-Y, Park S-D, Hong Y-K, Kim T-G (2007) Enhanced antitumour immunity by combined use of temozolomide and TAT-survivin pulsed dendritic cells in a murine glioma. Immunology 122(4):615–622. doi: 10.1111/j.1365-2567.2007.02680.x PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Gangemi RMR, Griffero F, Marubbi D, Perera M, Capra MC, Malatesta P, Ravetti GL, Zona GL, Daga A, Corte G (2009) SOX2 silencing in glioblastoma tumor-initiating cells causes stop of proliferation and loss of tumorigenicity. Stem Cells 27(1):40–48. doi: 10.1634/stemcells.2008-0493 PubMedCrossRefGoogle Scholar
  39. 39.
    Yang Y-P, Chien Y, Chiou G-Y, Cherng J-Y, Wang M-L, Lo W-L, Chang Y-L, Huang P-I, Chen Y-W, Shih Y-H, Chen M-T, Chiou S-H (2012) Inhibition of cancer stem cell-like properties and reduced chemoradioresistance of glioblastoma using microRNA145 with cationic polyurethane-short branch PEI. Biomaterials 33(5):1462–1476. doi: 10.1016/j.biomaterials.2011.10.071 PubMedCrossRefGoogle Scholar
  40. 40.
    Ardon H, Van Gool SW, Verschuere T, Maes W, Fieuws S, Sciot R, Wilms G, Demaerel P, Goffin J, Van Calenbergh F, Menten J, Clement P, Debiec-Rychter M, De Vleeschouwer S (2012) Integration of autologous dendritic cell-based immunotherapy in the standard of care treatment for patients with newly diagnosed glioblastoma: results of the HGG-2006 phase I/II trial. Cancer Immunol Immunother 61(11):2033–2044. doi: 10.1007/s00262-012-1261-1 PubMedCrossRefGoogle Scholar
  41. 41.
    Prins RM, Wang X, Soto H, Young E, Lisiero DN, Fong B, Everson R, Yong WH, Lai A, Li G, Cloughesy TF, Liau LM (2013) Comparison of glioma-associated antigen peptide-loaded versus autologous tumor lysate-loaded dendritic cell vaccination in malignant glioma patients. J Immunother 36(2):152–157. doi: 10.1097/CJI.0b013e3182811ae4 PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Phuphanich S, Wheeler CJ, Rudnick JD, Mazer M, Wang H, Nuño MA, Richardson JE, Fan X, Ji J, Chu RM, Bender JG, Hawkins ES, Patil CG, Black KL, Yu JS (2012) Phase I trial of a multi-epitope-pulsed dendritic cell vaccine for patients with newly diagnosed glioblastoma. Cancer Immunol Immunother. doi: 10.1007/s00262-012-1319-0 PubMedCentralPubMedGoogle Scholar
  43. 43.
    Sabado RL, Bhardwaj N (2013) Dendritic cell immunotherapy. Ann N Y Acad Sci 1284:31–45. doi: 10.1111/nyas.12125 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Martin K. Hunn
    • 1
    • 2
    • 3
    Email author
  • Evelyn Bauer
    • 1
  • Catherine E. Wood
    • 1
    • 3
  • Olivier Gasser
    • 1
  • Marina Dzhelali
    • 3
  • Lindsay R. Ancelet
    • 1
  • Brigitta Mester
    • 1
  • Katrina J. Sharples
    • 4
    • 5
  • Michael P. Findlay
    • 4
  • David A. Hamilton
    • 3
  • Ian F. Hermans
    • 1
    • 2
  1. 1.Malaghan Institute of Medical ResearchWellingtonNew Zealand
  2. 2.School of Biological SciencesVictoria University of WellingtonWellingtonNew Zealand
  3. 3.Capital and Coast District Health BoardWellingtonNew Zealand
  4. 4.Cancer Trials New Zealand, Division of OncologyUniversity of AucklandAucklandNew Zealand
  5. 5.Dunedin School of MedicineUniversity of OtagoDunedinNew Zealand

Personalised recommendations