Advertisement

Journal of Neuro-Oncology

, Volume 121, Issue 1, pp 141–150 | Cite as

Evaluation of the microenvironmental heterogeneity in high-grade gliomas with IDH1/2 gene mutation using histogram analysis of diffusion-weighted imaging and dynamic-susceptibility contrast perfusion imaging

  • Seunghyun Lee
  • Seung Hong Choi
  • Inseon Ryoo
  • Tae Jin Yoon
  • Tae Min Kim
  • Se-Hoon Lee
  • Chul-Kee Park
  • Ji-Hoon Kim
  • Chul-Ho Sohn
  • Sung-Hye Park
  • Il Han Kim
Clinical Study

Abstract

The purpose of our study was to explore the difference between isocitrate dehydrogenase (IDH)-1/2 gene mutation-positive and -negative high-grade gliomas (HGGs) using histogram analysis of apparent diffusion coefficient (ADC) and normalized cerebral blood volume (nCBV) maps. We enrolled 52 patients with histopathologically confirmed HGGs with IDH1/2 P (n = 16) or IDH1/2 N (n = 36). Histogram parameters of ADC and nCBV maps were correlated with gene mutations by using the unpaired student’s t test and multivariable stepwise logistic regression analysis. The mean ADC value was higher in the IDH1 P group than IDH1 N (1,282.8 vs. 1,159.6 mm2/s, P = .0113). In terms of the cumulative ADC histograms, the 10th and 50th percentile values were also higher in the IDH1 P than IDH1 N (P = .0104 and .0183, respectively). We observed a higher 90th percentile value (3.121 vs. 2.397, P = .0208) and a steeper slope between the 10th (C10) and 90th (C90) of cumulative nCBV histograms (0.03386 vs. 0.02425/%, P = .0067) in the IDH1 N group. Multivariate analysis showed that the mean ADC mean value (P = .0048), the C90 value (P = .0113), and the slope between C10 and C90 (P = .0049) were the significant variables in the differentiation of IDH1 P from IDH1 N. In conclusion, histogram analysis of ADC and nCBV maps based on entire tumor volume can be a useful tool for distinguishing IDH1 P and IDH1 N, and it predicts that IDH P tumors have a more heterogeneous microenvironment than IDH N ones.

Keywords

Isocitrate dehydrogenase IDH gene mutation High-grade gliomas ADC nCBV DWI DSC-PWI 

Notes

Acknowledgments

This study was supported by a grant from the National R&D Program for Cancer Control, Ministry of Health & Welfare, Republic of Korea (1120300), the Korea Healthcare technology R&D Projects, Ministry for Health, Welfare & Family Affairs (A112028 and HI13C0015), and the Research Center Program of IBS (Institute for Basic Science) in Korea.

Conflict of interest

None of the authors have any conflict of interest.

Supplementary material

11060_2014_1614_MOESM1_ESM.docx (28 kb)
Supplementary material 1 (DOCX 27 kb)

References

  1. 1.
    Daumas-Duport C, Scheithauer B, O’Fallon J, Kelly P (1988) Grading of astrocytomas. A simple and reproducible method. Cancer 62:2152–2165PubMedCrossRefGoogle Scholar
  2. 2.
    Nikiforova MN, Hamilton RL (2011) Molecular diagnostics of gliomas. Arch Pathol Lab Med 135:558–568PubMedGoogle Scholar
  3. 3.
    Balss J, Meyer J, Mueller W, Korshunov A, Hartmann C, von Deimling A (2008) Analysis of the IDH1 codon 132 mutation in brain tumors. Acta Neuropathol 116:597–602PubMedCrossRefGoogle Scholar
  4. 4.
    Yan H, Parsons DW, Jin GL, McLendon R, Rasheed BA, Yuan WS, Kos I, Batinic-Haberle I, Jones S, Riggins GJ, Friedman H, Friedman A, Reardon D, Herndon J, Kinzler KW, Velculescu VE, Vogelstein B, Bigner DD (2009) IDH1 and IDH2 mutations in gliomas. New Engl J Med 360:765–773PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Hartmann C, Hentschel B, Wick W, Capper D, Felsberg J, Simon M, Westphal M, Schackert G, Meyermann R, Pietsch T, Reifenberger G, Weller M, Loeffler M, von Deimling A (2010) Patients with IDH1 wild type anaplastic astrocytomas exhibit worse prognosis than IDH1-mutated glioblastomas, and IDH1 mutation status accounts for the unfavorable prognostic effect of higher age: implications for classification of gliomas. Acta Neuropathol 120:707–718PubMedCrossRefGoogle Scholar
  6. 6.
    Parsons DW, Jones S, Zhang X, Lin JC, Leary RJ, Angenendt P, Mankoo P, Carter H, Siu IM, Gallia GL, Olivi A, McLendon R, Rasheed BA, Keir S, Nikolskaya T, Nikolsky Y, Busam DA, Tekleab H, Diaz LA Jr, Hartigan J, Smith DR, Strausberg RL, Marie SK, Shinjo SM, Yan H, Riggins GJ, Bigner DD, Karchin R, Papadopoulos N, Parmigiani G, Vogelstein B, Velculescu VE, Kinzler KW (2008) An integrated genomic analysis of human glioblastoma multiforme. Science 321:1807–1812PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Sanson M, Marie Y, Paris S, Idbaih A, Laffaire J, Ducray F, El Hallani S, Boisselier B, Mokhtari K, Hoang-Xuan K, Delattre JY (2009) Isocitrate dehydrogenase 1 codon 132 mutation is an important prognostic biomarker in gliomas. J Clin Oncol 27:4150–4154PubMedCrossRefGoogle Scholar
  8. 8.
    Andronesi OC, Rapalino O, Gerstner E, Chi A, Batchelor TT, Cahil DP, Sorensen AG, Rosen BR (2013) Detection of oncogenic IDH1 mutations using magnetic resonance spectroscopy of 2-hydroxyglutarate. J Clin Invest 123:3659–3663PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Kim H, Choi SH, Kim JH, Ryoo I, Kim SC, Yeom JA, Shin H, Jung SC, Lee AL, Yun TJ, Park CK, Sohn CH, Park SH (2013) Gliomas: application of cumulative histogram analysis of normalized cerebral blood volume on 3 T MRI to tumor grading. PLoS ONE 8(5):e63462. doi: 10.1371/journal.pone.0063462 PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Jung SC, Choi SH, Yeom JA, Kim JH, Ryoo I, Kim SC, Shin H, Lee AL, Yun TJ, Park CK, Sohn CH, Park SH (2013) Cerebral blood volume analysis in glioblastomas using dynamic susceptibility contrast-enhanced perfusion MRI: a comparison of manual and semiautomatic segmentation methods. PLoS ONE 8(8):e69323. doi: 10.1371/journal.pone.0069323 PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Thomsen H, Steffensen E, Larsson EM (2012) Perfusion MRI (dynamic susceptibility contrast imaging) with different measurement approaches for the evaluation of blood flow and blood volume in human gliomas. Acta Radiol 53:95–101PubMedCrossRefGoogle Scholar
  12. 12.
    Carrillo JA, Lai A, Nghiemphu PL, Kim HJ, Phillips HS, Kharbanda S, Moftakhar P, Lalaezari S, Yong W, Ellingson BM, Cloughesy TF, Pope WB (2012) Relationship between tumor enhancement, edema, IDH1 mutational status, MGMT promoter methylation, and survival in glioblastoma. Am J Neuroradiol 33:1349–1355PubMedCrossRefGoogle Scholar
  13. 13.
    Kang Y, Choi SH, Kim YJ, Kim KG, Sohn CH, Kim JH, Yun TJ, Chang KH (2011) Gliomas: histogram analysis of apparent diffusion coefficient maps with standard- or high-b-value diffusion-weighted MR imaging—correlation with tumor grade. Radiology 261:882–890PubMedCrossRefGoogle Scholar
  14. 14.
    Garzon B, Emblem KE, Mouridsen K, Nedregaard B, Due-Tonnessen P, Nome T, Hald JK, Bjornerud A, Haberg AK, Kvinnsland Y (2011) Multiparametric analysis of magnetic resonance images for glioma grading and patient survival time prediction. Acta Radiol 52:1052–1060PubMedCrossRefGoogle Scholar
  15. 15.
    Rosen BR, Belliveau JW, Vevea JM, Brady TJ (1990) Perfusion imaging with NMR contrast agents. Magn Reson Med 14:249–265PubMedCrossRefGoogle Scholar
  16. 16.
    Ostergaard L, Weisskoff RM, Chesler DA, Gyldensted C, Rosen BR (1996) High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. 1. Mathematical approach and statistical analysis. Magnet Reson Med 36:715–725CrossRefGoogle Scholar
  17. 17.
    Boxerman JL, Schmainda KM, Weisskoff RM (2006) Relative cerebral blood volume maps corrected for contrast agent extravasation significantly correlate with glioma tumor grade, whereas uncorrected maps do not. Am J Neuroradiol 27:859–867PubMedGoogle Scholar
  18. 18.
    Wetzel SG, Cha S, Johnson G, Lee P, Law M, Kasow DL, Pierce SD, Xue X (2002) Relative cerebral blood volume measurements in intracranial mass lesions: interobserver and intraobserver reproducibility study. Radiology 224:797–803PubMedCrossRefGoogle Scholar
  19. 19.
    Tozer DJ, Jager HR, Danchaivijitr N, Benton CE, Tofts PS, Rees JH, Waldman AD (2007) Apparent diffusion coefficient histograms may predict low-grade glioma subtype. NMR Biomed 20:49–57PubMedCrossRefGoogle Scholar
  20. 20.
    Delong ER, Delong DM, Clarkepearson DI (1988) Comparing the areas under 2 or more correlated receiver operating characteristic curves—a nonparametric approach. Biometrics 44:837–845PubMedCrossRefGoogle Scholar
  21. 21.
    Hartmann C, Meyer J, Balss J, Capper D, Mueller W, Christians A, Felsberg J, Wolter M, Mawrin C, Wick W, Weller M, Herold-Mende C, Unterberg A, Jeuken JWM, Wesseling P, Reifenberger G, von Deimling A (2009) Type and frequency of IDH1 and IDH2 mutations are related to astrocytic and oligodendroglial differentiation and age: a study of 1,010 diffuse gliomas. Acta Neuropathol 118:469–474PubMedCrossRefGoogle Scholar
  22. 22.
    Ichimura K, Pearson DM, Kocialkowski S, Backlund LM, Chan R, Jones DTW, Collins VP (2009) IDH1 mutations are present in the majority of common adult gliomas but rare in primary glioblastomas. Neuro-Oncology 11:341–347PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Watanabe T, Nobusawa S, Kleihues P, Ohgaki H (2009) IDH1 mutations are early events in the development of astrocytomas and oligodendrogliomas. Am J Pathol 174:1149–1153PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Pope WB, Prins RM, Albert Thomas M, Nagarajan R, Yen KE, Bittinger MA, Salamon N, Chou AP, Yong WH, Soto H, Wilson N, Driggers E, Jang HG, Su SM, Schenkein DP, Lai A, Cloughesy TF, Kornblum HI, Wu H, Fantin VR, Liau LM (2012) Non-invasive detection of 2-hydroxyglutarate and other metabolites in IDH1 mutant glioma patients using magnetic resonance spectroscopy. J Neurooncol 107:197–205PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Choi C, Ganji SK, DeBerardinis RJ, Hatanpaa KJ, Rakheja D, Kovacs Z, Yang XL, Mashimo T, Raisanen JM, Marin-Valencia I, Pascual JM, Madden CJ, Mickey BE, Malloy CR, Bachoo RM, Maher EA (2012) 2-hydroxyglutarate detection by magnetic resonance spectroscopy in IDH-mutated patients with gliomas. Nat Med 18:624–629PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Emblem KE, Nedregaard B, Nome T, Due-Tonnessen P, Hald JK, Scheie D, Borota OC, Cvancarova M, Bjornerud A (2008) Glioma grading by using histogram analysis of blood volume heterogeneity from MR-derived cerebral blood volume maps. Radiology 247:808–817PubMedCrossRefGoogle Scholar
  27. 27.
    Tan WL, Huang WY, Yin B, Xiong J, Wu JS, Geng DY (2014) Can diffusion tensor imaging noninvasively detect IDH1 gene mutations in astrogliomas? A retrospective study of 112 cases. AJNR Am J Neuroradiol 35:920–927. doi: 10.3174/ajnr.A3803 PubMedCrossRefGoogle Scholar
  28. 28.
    Emblem KE, Scheie D, Due-Tonnessen P, Nedregaard B, Nome T, Hald JK, Beiske K, Meling TR, Bjornerud A (2008) Histogram analysis of mr imaging-derived cerebral blood volume maps: combined glioma grading and identification of low-grade oligodendroglial subtypes. Am J Neuroradiol 29:1664–1670PubMedCrossRefGoogle Scholar
  29. 29.
    Young R, Babb J, Law M, Pollack E, Johnson G (2007) Comparison of region-of-interest analysis with three different histogram analysis methods in the determination of perfusion metrics in patients with brain gliomas. J Magn Reson Imaging 26:1053–1063PubMedCrossRefGoogle Scholar
  30. 30.
    Paulson ES, Schmainda KM (2008) Comparison of Dynamic susceptibility-weighted contrast-enhanced mr methods: recommendations for measuring relative cerebral blood volume in brain tumors. Radiology 249:601–613PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Jiao YC, Killela PJ, Reitman ZJ, Rasheed BA, Heaphy CM, de Wilde RF, Rodriguez FJ, Rosemberg S, Oba-Shinjo SM, Marie SKN, Bettegowda C, Agrawal N, Lipp E, Pirozzi CJ, Lopez GY, He YP, Friedman HS, Friedman AH, Riggins GJ, Holdhoff M, Burger P, McLendon RE, Bigner DD, Vogelstein B, Meeker AK, Kinzler KW, Papadopoulos N, Diaz LA, Yan H (2012) Frequent ATRX, CIC, FUBP1 and IDH1 mutations refine the classification of malignant gliomas. Oncotarget 3:709–722PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Seunghyun Lee
    • 1
  • Seung Hong Choi
    • 1
    • 2
  • Inseon Ryoo
    • 1
  • Tae Jin Yoon
    • 1
  • Tae Min Kim
    • 3
  • Se-Hoon Lee
    • 3
  • Chul-Kee Park
    • 4
  • Ji-Hoon Kim
    • 1
  • Chul-Ho Sohn
    • 1
  • Sung-Hye Park
    • 5
  • Il Han Kim
    • 6
  1. 1.Department of RadiologySeoul National University College of MedicineSeoulKorea
  2. 2.Center for Nanoparticle Research, Institute for Basic Science, and School of Chemical and Biological EngineeringSeoul National UniversitySeoulKorea
  3. 3.Department of Internal Medicine, Cancer Research InstituteSeoul National University College of MedicineSeoulKorea
  4. 4.Department of NeurosurgerySeoul National University College of MedicineSeoulKorea
  5. 5.Department of PathologySeoul National University College of MedicineSeoulKorea
  6. 6.Department of Radiation Oncology, Cancer Research InstituteSeoul National University College of MedicineSeoulKorea

Personalised recommendations