Advertisement

Journal of Neuro-Oncology

, Volume 121, Issue 1, pp 19–29 | Cite as

Tight regulation between cell survival and programmed cell death in GBM stem-like cells by EGFR/GSK3b/PP2A signaling

  • Demirkan B. Gürsel
  • Matei A. Banu
  • Nicholas Berry
  • Roberta Marongiu
  • Jan-Karl Burkhardt
  • Keith Kobylarz
  • Michael G. Kaplitt
  • Shahin Rafii
  • John A. BoockvarEmail author
Laboratory Investigation

Abstract

Malignant gliomas represent one of the most aggressive forms of cancer, displaying high mortality rates and limited treatment options. Specific subpopulations of cells residing in the tumor niche with stem-like characteristics have been postulated to initiate and maintain neoplasticity while resisting conventional therapies. The study presented here aims to define the role of glycogen synthase kinase 3 beta (GSK3b) in patient-derived glioblastoma (GBM) stem-like cell (GSC) proliferation, apoptosis and invasion. To evaluate the potential role of GSK3b in GBM, protein profiles from 68 GBM patients and 20 normal brain samples were analyzed for EGFR-mediated PI3kinase/Akt and GSK3b signaling molecules including protein phosphatase 2A (PP2A). To better understand the function of GSK3b in GBM, GSCs were isolated from GBM patient samples. Blocking GSK3b phosphorylation at Serine 9 attenuated cell proliferation while concomitantly stimulating apoptosis through activation of Caspase-3 in patient-derived GSCs. Increasing GSK3b protein content resulted in the inhibition of cell proliferation, colony formation and stimulated programmed cell death. Depleting GSK3b in GSCs down regulated PP2A. Furthermore, knocking down PP2A or blocking its activity by okadaic acid inactivated GSK3b by increasing GSK3b phosphorylation at Serine 9. Our data suggests that GSK3b may function as a regulator of apoptosis and tumorigenesis in GSCs. Therapeutic approaches targeting GSK3b in glioblastoma stem-like cells may be a useful addition to our current therapeutic armamentarium.

Keywords

Glioblastoma Cancer stem cells EGFR Glycogen synthase kinase 3 PP2A Apoptosis 

Notes

Acknowledgments

The authors would like to thank Maria Irina Chiriac for excellent technical assistance in preparing the figures of this manuscript.

Disclosure

The authors declare that they have no conflict of interest. The authors report no financial or material support concerning the materials or methods used in this study or the findings specified in this paper.

Supplementary material

11060_2014_1602_MOESM1_ESM.tif (87.1 mb)
Supplementary material 1 (TIFF 89152 kb)
11060_2014_1602_MOESM2_ESM.tif (49.9 mb)
Supplementary material 2 (TIFF 51085 kb)
11060_2014_1602_MOESM3_ESM.jpg (3.8 mb)
Supplementary material 3 (JPEG 3892 kb)
11060_2014_1602_MOESM4_ESM.jpg (2.5 mb)
Supplementary material 4 (JPEG 2600 kb)
11060_2014_1602_MOESM5_ESM.docx (47 kb)
Supplementary material 5 (DOCX 46 kb)

References

  1. 1.
    Bleau AM, Howard BM, Taylor LA, Gursel D, Greenfield JP, Lim Tung HY, Holland EC, Boockvar JA (2008) New strategy for the analysis of phenotypic marker antigens in brain tumor-derived neurospheres in mice and humans. Neurosurg Focus 24:E28. doi: 10.3171/FOC/2008/24/3-4/E27 PubMedCrossRefGoogle Scholar
  2. 2.
    Pollard SM, Yoshikawa K, Clarke ID, Danovi D, Stricker S, Russell R, Bayani J, Head R, Lee M, Bernstein M, Squire JA, Smith A, Dirks P (2009) Glioma stem cell lines expanded in adherent culture have tumor-specific phenotypes and are suitable for chemical and genetic screens. Cell Stem Cell 4:568–580. doi: 10.1016/j.stem.2009.03.014 PubMedCrossRefGoogle Scholar
  3. 3.
    Sanai N, Alvarez-Buylla A, Berger MS (2005) Neural stem cells and the origin of gliomas. N Engl J Med 353:811–822. doi: 10.1056/NEJMra043666 PubMedCrossRefGoogle Scholar
  4. 4.
    Wang JC (2007) Evaluating therapeutic efficacy against cancer stem cells: new challenges posed by a new paradigm. Cell Stem Cell 1:497–501PubMedCrossRefGoogle Scholar
  5. 5.
    Gursel DB, Shin BJ, Burkhardt JK, Kesavabhotla K, Schlaff CD, Boockvar JA (2011) Glioblastoma stem-like cells-biology and therapeutic implications. Cancers 3:2655–2666. doi: 10.3390/cancers3022655 PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Embi N, Rylatt DB, Cohen P (1980) Glycogen synthase kinase-3 from rabbit skeletal muscle. Separation from cyclic-AMP-dependent protein kinase and phosphorylase kinase. Eur J biochem/FEBS 107:519–527CrossRefGoogle Scholar
  7. 7.
    Ring DB, Johnson KW, Henriksen EJ, Nuss JM, Goff D, Kinnick TR, Ma ST, Reeder JW, Samuels I, Slabiak T, Wagman AS, Hammond ME, Harrison SD (2003) Selective glycogen synthase kinase 3 inhibitors potentiate insulin activation of glucose transport and utilization in vitro and in vivo. Diabetes 52:588–595PubMedCrossRefGoogle Scholar
  8. 8.
    Ougolkov AV, Fernandez-Zapico ME, Bilim VN, Smyrk TC, Chari ST, Billadeau DD (2006) Aberrant nuclear accumulation of glycogen synthase kinase-3beta in human pancreatic cancer: association with kinase activity and tumor dedifferentiation. Clinical cancer research : an official journal of the American Association for Cancer Research 12:5074–5081. doi: 10.1158/1078-0432.CCR-06-0196 CrossRefGoogle Scholar
  9. 9.
    Ougolkov AV, Billadeau DD (2006) Targeting GSK-3: a promising approach for cancer therapy? Future Oncol 2:91–100. doi: 10.2217/14796694.2.1.91 PubMedCrossRefGoogle Scholar
  10. 10.
    Kang T, Wei Y, Honaker Y, Yamaguchi H, Appella E, Hung MC, Piwnica-Worms H (2008) GSK-3 beta targets Cdc25A for ubiquitin-mediated proteolysis, and GSK-3 beta inactivation correlates with Cdc25A overproduction in human cancers. Cancer Cell 13:36–47. doi: 10.1016/j.ccr.2007.12.002 PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Ding Q, Xia W, Liu JC, Yang JY, Lee DF, Xia J, Bartholomeusz G, Li Y, Pan Y, Li Z, Bargou RC, Qin J, Lai CC, Tsai FJ, Tsai CH, Hung MC (2005) Erk associates with and primes GSK-3beta for its inactivation resulting in upregulation of beta-catenin. Mol Cell 19:159–170. doi: 10.1016/j.molcel.2005.06.009 PubMedCrossRefGoogle Scholar
  12. 12.
    Shi CS, Huang NN, Harrison K, Han SB, Kehrl JH (2006) The mitogen-activated protein kinase kinase kinase kinase GCKR positively regulates canonical and noncanonical Wnt signaling in B lymphocytes. Mol Cell Biol 26:6511–6521. doi: 10.1128/MCB.00209-06 PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Lenferink AE, Busse D, Flanagan WM, Yakes FM, Arteaga CL (2001) ErbB2/neu kinase modulates cellular p27(Kip1) and cyclin D1 through multiple signaling pathways. Cancer Res 61:6583–6591PubMedGoogle Scholar
  14. 14.
    Ougolkov AV, Fernandez-Zapico ME, Savoy DN, Urrutia RA, Billadeau DD (2005) Glycogen synthase kinase-3beta participates in nuclear factor kappaB-mediated gene transcription and cell survival in pancreatic cancer cells. Cancer Res 65:2076–2081. doi: 10.1158/0008-5472.CAN-04-3642 PubMedCrossRefGoogle Scholar
  15. 15.
    Tan J, Zhuang L, Leong HS, Iyer NG, Liu ET, Yu Q (2005) Pharmacologic modulation of glycogen synthase kinase-3beta promotes p53-dependent apoptosis through a direct Bax-mediated mitochondrial pathway in colorectal cancer cells. Cancer Res 65:9012–9020. doi: 10.1158/0008-5472.CAN-05-1226 PubMedCrossRefGoogle Scholar
  16. 16.
    Korur S, Huber RM, Sivasankaran B, Petrich M, Morin P Jr, Hemmings BA, Merlo A, Lino MM (2009) GSK3beta regulates differentiation and growth arrest in glioblastoma. PLoS One 4:e7443. doi: 10.1371/journal.pone.0007443 PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Li Y, Lu HM, Li G, Yan GM (2010) Glycogen synthase kinase-3beta regulates astrocytic differentiation of U87-MG human glioblastoma cells. Acta Pharmacol Sin 31:355–360. doi: 10.1038/aps.2010.10 PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Lin CF, Chen CL, Chiang CW, Jan MS, Huang WC, Lin YS (2007) GSK-3beta acts downstream of PP2A and the PI 3-kinase-Akt pathway, and upstream of caspase-2 in ceramide-induced mitochondrial apoptosis. J Cell Sci 120:2935–2943. doi: 10.1242/jcs.03473 PubMedCrossRefGoogle Scholar
  19. 19.
    Cohen P, Frame S (2001) The renaissance of GSK3. Nat Rev Mol Cell Biol 2:769–776. doi: 10.1038/35096075 PubMedCrossRefGoogle Scholar
  20. 20.
    Gursel DB, Beyene RT, Hofstetter C, Greenfield JP, Souweidane MM, Kaplitt M, Arango-Lievano M, Howard B, Boockvar JA (2011) Optimization of glioblastoma multiforme stem cell isolation, transfection, and transduction. J Neurooncol 104:509–522. doi: 10.1007/s11060-011-0528-2 PubMedCrossRefGoogle Scholar
  21. 21.
    Ekstrand AJ, James CD, Cavenee WK, Seliger B, Pettersson RF, Collins VP (1991) Genes for epidermal growth factor receptor, transforming growth factor alpha, and epidermal growth factor and their expression in human gliomas in vivo. Cancer Res 51:2164–2172PubMedGoogle Scholar
  22. 22.
    Chakravarti A, Zhai G, Suzuki Y, Sarkesh S, Black PM, Muzikansky A, Loeffler JS (2004) The prognostic significance of phosphatidylinositol 3-kinase pathway activation in human gliomas. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 22:1926–1933. doi: 10.1200/JCO.2004.07.193 CrossRefGoogle Scholar
  23. 23.
    Sathornsumetee S, Reardon DA, Desjardins A, Quinn JA, Vredenburgh JJ, Rich JN (2007) Molecularly targeted therapy for malignant glioma. Cancer 110:13–24. doi: 10.1002/cncr.22741 PubMedCrossRefGoogle Scholar
  24. 24.
    Miyashita K, Kawakami K, Nakada M, Mai W, Shakoori A, Fujisawa H, Hayashi Y, Hamada J, Minamoto T (2009) Potential therapeutic effect of glycogen synthase kinase 3beta inhibition against human glioblastoma. Clinical cancer research : an official journal of the American Association for Cancer Research 15:887–897. doi: 10.1158/1078-0432.CCR-08-0760 CrossRefGoogle Scholar
  25. 25.
    Cross DA, Alessi DR, Cohen P, Andjelkovich M, Hemmings BA (1995) Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 378:785–789. doi: 10.1038/378785a0 PubMedCrossRefGoogle Scholar
  26. 26.
    Cross DA, Alessi DR, Vandenheede JR, McDowell HE, Hundal HS, Cohen P (1994) The inhibition of glycogen synthase kinase-3 by insulin or insulin-like growth factor 1 in the rat skeletal muscle cell line L6 is blocked by wortmannin, but not by rapamycin: evidence that wortmannin blocks activation of the mitogen-activated protein kinase pathway in L6 cells between Ras and Raf. Biochem J 303(Pt 1):21–26PubMedCentralPubMedGoogle Scholar
  27. 27.
    Hurel SJ, Rochford JJ, Borthwick AC, Wells AM, Vandenheede JR, Turnbull DM, Yeaman SJ (1996) Insulin action in cultured human myoblasts: contribution of different signalling pathways to regulation of glycogen synthesis. Biochem J 320(Pt 3):871–877PubMedCentralPubMedGoogle Scholar
  28. 28.
    Saito Y, Vandenheede JR, Cohen P (1994) The mechanism by which epidermal growth factor inhibits glycogen synthase kinase 3 in A431 cells. Biochem J 303(Pt 1):27–31PubMedCentralPubMedGoogle Scholar
  29. 29.
    Pap M, Cooper GM (1998) Role of glycogen synthase kinase-3 in the phosphatidylinositol 3-Kinase/Akt cell survival pathway. J Biol Chem 273:19929–19932PubMedCrossRefGoogle Scholar
  30. 30.
    Song L, De Sarno P, Jope RS (2002) Central role of glycogen synthase kinase-3beta in endoplasmic reticulum stress-induced caspase-3 activation. J Biol Chem 277:44701–44708. doi: 10.1074/jbc.M206047200 PubMedCrossRefGoogle Scholar
  31. 31.
    Stegh AH, Kim H, Bachoo RM, Forloney KL, Zhang J, Schulze H, Park K, Hannon GJ, Yuan J, Louis DN, DePinho RA, Chin L (2007) Bcl2L12 inhibits post-mitochondrial apoptosis signaling in glioblastoma. Genes Dev 21:98–111. doi: 10.1101/gad.1480007 PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Stegh AH, Kesari S, Mahoney JE, Jenq HT, Forloney KL, Protopopov A, Louis DN, Chin L, DePinho RA (2008) Bcl2L12-mediated inhibition of effector caspase-3 and caspase-7 via distinct mechanisms in glioblastoma. Proc Natl Acad Sci USA 105:10703–10708. doi: 10.1073/pnas.0712034105 PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Stegh AH, Chin L, Louis DN, DePinho RA (2008) What drives intense apoptosis resistance and propensity for necrosis in glioblastoma? A role for Bcl2L12 as a multifunctional cell death regulator. Cell Cycle 7:2833–2839PubMedCrossRefGoogle Scholar
  34. 34.
    Chou CH, Chou AK, Lin CC, Chen WJ, Wei CC, Yang MC, Hsu CM, Lung FW, Loh JK, Howng SL, Hong YR (2012) GSK3beta regulates Bcl2L12 and Bcl2L12A anti-apoptosis signaling in glioblastoma and is inhibited by LiCl. Cell Cycle 11:532–542. doi: 10.4161/cc.11.3.19051 PubMedCrossRefGoogle Scholar
  35. 35.
    Pap M, Cooper GM (2002) Role of translation initiation factor 2B in control of cell survival by the phosphatidylinositol 3-kinase/Akt/glycogen synthase kinase 3beta signaling pathway. Mol Cell Biol 22:578–586PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Bijur GN, De Sarno P, Jope RS (2000) Glycogen synthase kinase-3beta facilitates staurosporine- and heat shock-induced apoptosis. Protection by lithium. J Biol Chem 275:7583–7590PubMedCrossRefGoogle Scholar
  37. 37.
    Hoeflich KP, Luo J, Rubie EA, Tsao MS, Jin O, Woodgett JR (2000) Requirement for glycogen synthase kinase-3beta in cell survival and NF-kappaB activation. Nature 406:86–90. doi: 10.1038/35017574 PubMedCrossRefGoogle Scholar
  38. 38.
    Ma C, Wang J, Gao Y, Gao TW, Chen G, Bower KA, Odetallah M, Ding M, Ke Z, Luo J (2007) The role of glycogen synthase kinase 3beta in the transformation of epidermal cells. Cancer Res 67:7756–7764. doi: 10.1158/0008-5472.CAN-06-4665 PubMedCrossRefGoogle Scholar
  39. 39.
    Schonthal AH (2001) Role of serine/threonine protein phosphatase 2A in cancer. Cancer Lett 170:1–13PubMedCrossRefGoogle Scholar
  40. 40.
    Lu J, Kovach JS, Johnson F, Chiang J, Hodes R, Lonser R, Zhuang Z (2009) Inhibition of serine/threonine phosphatase PP2A enhances cancer chemotherapy by blocking DNA damage induced defense mechanisms. Proc Natl Acad Sci USA 106:11697–11702. doi: 10.1073/pnas.0905930106 PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Hofstetter CP, Burkhardt JK, Shin BJ, Gursel DB, Mubita L, Gorrepati R, Brennan C, Holland EC, Boockvar JA (2012) Protein phosphatase 2A mediates dormancy of glioblastoma multiforme-derived tumor stem-like cells during hypoxia. PLoS One 7:e30059. doi: 10.1371/journal.pone.0030059 PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Kuo YC, Huang KY, Yang CH, Yang YS, Lee WY, Chiang CW (2008) Regulation of phosphorylation of Thr-308 of Akt, cell proliferation, and survival by the B55alpha regulatory subunit targeting of the protein phosphatase 2A holoenzyme to Akt. J Biol Chem 283:1882–1892. doi: 10.1074/jbc.M709585200 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Demirkan B. Gürsel
    • 1
  • Matei A. Banu
    • 1
  • Nicholas Berry
    • 1
  • Roberta Marongiu
    • 2
  • Jan-Karl Burkhardt
    • 1
  • Keith Kobylarz
    • 3
  • Michael G. Kaplitt
    • 2
  • Shahin Rafii
    • 3
  • John A. Boockvar
    • 1
    Email author
  1. 1.Laboratory for Translational Brain Tumor and Stem Cell Research, Department of Neurological Surgery, Weill Cornell Brain Tumor CenterWeill Cornell Medical CollegeNew YorkUSA
  2. 2.Department of Neurological Surgery, Weill Cornell Brain Tumor CenterWeill Cornell Medical CollegeNew YorkUSA
  3. 3.Department of Genetic Medicine, Howard Hughes Medical Institute, Ansary Stem Cell InstituteWeill Cornell Medical CollegeNew YorkUSA

Personalised recommendations