Journal of Neuro-Oncology

, Volume 119, Issue 2, pp 297–306 | Cite as

In vivo and ex vivo assessment of the blood brain barrier integrity in different glioblastoma animal models

  • Cindy Leten
  • Tom Struys
  • Tom Dresselaers
  • Uwe Himmelreich
Laboratory Investigation


Blood brain barrier (BBB) disruption is used (pre)clinically as a measure for brain tumor malignancy and grading. During treatment it is one of the parameters followed rigorously to assess therapeutic efficacy. In animal models, both invasive and non-invasive methods are used to determine BBB disruption, among them Evans blue injection prior to sacrifice and T1-weighted magnetic resonance imaging (MRI) post contrast injection. In this study, we have assessed the BBB integrity with the methods mentioned above in two experimental high grade glioma models, namely the GL261 mouse glioblastoma model and the Hs683 human oligodendroglioma model. The GL261 model showed clear BBB integrity loss with both, contrast-enhanced (CE) MRI and Evans blue staining. In contrast, the Hs683 model only displayed BBB disruption with CE-MRI, which was not evident on Evans blue staining, indicating a limited BBB disruption. These results clearly indicate the importance of assessing the BBB integrity status using appropriate methods. Especially when using large therapeutic molecules that have difficulties crossing the BBB, care should be taken with the appropriate BBB disruption assessment studies.


Magnetic resonance imaging Blood brain barrier Glioma Animal model Contrast agent 



We would like to thank Prof. Van Gool and Prof. Kiss for supplying us with GL261 and Hs683 tumor cell lines. Furthermore, we would like to thank Prof. Lambrichts and Ms. Santermans for the use of the equipment of the lab of Histology at Hasselt University. Finally, we would also like to thank Prof Verfaillie for logistic support. We are grateful for the financial support from the European commission for EC-FP7 HEALTH.2011.2.2.1–2 (INMiND), from the Flemish government for FWO G0A7514 N, IWT-SBO MIRIAD (130065) and IWT-BRAINSTIM (060838) and from the University of Leuven for the program financing IMIR (PF 10/017).

Conflict of interest

The authors declare that there are no conflicts of interest.


  1. 1.
    Zagzag D et al (2000) Vascular apoptosis and involution in gliomas precede neovascularization: a novel concept for glioma growth and angiogenesis. Lab Invest 80(6):837–849PubMedCrossRefGoogle Scholar
  2. 2.
    Wesseling P, Ruiter DJ, Burger PC (1997) Angiogenesis in brain tumors; pathobiological and clinical aspects. J Neurooncol 32(3):253–265PubMedCrossRefGoogle Scholar
  3. 3.
    Kaya M, Ahishali B (2011) Assessment of permeability in barrier type of endothelium in brain using tracers: evans blue, sodium fluorescein, and horseradish peroxidase. Methods Mol Biol 763:369–382PubMedCrossRefGoogle Scholar
  4. 4.
    Roberts HC et al (2002) Quantitative estimation of microvascular permeability in human brain tumors: correlation of dynamic Gd-DTPA-enhanced MR imaging with histopathologic grading. Acad Radiol 9(Suppl 1):S151–S155PubMedCrossRefGoogle Scholar
  5. 5.
    Just M et al (1991) MRI-assisted radiation therapy planning of brain tumors–clinical experiences in 17 patients. Magn Reson Imaging 9(2):173–177PubMedCrossRefGoogle Scholar
  6. 6.
    Roberts HC et al (2002) Dynamic, contrast-enhanced CT of human brain tumors: quantitative assessment of blood volume, blood flow, and microvascular permeability: report of two cases. AJNR Am J Neuroradiol 23(5):828–832PubMedGoogle Scholar
  7. 7.
    Nomura T, Inamura T, Black KL (1994) Intracarotid infusion of bradykinin selectively increases blood-tumor permeability in 9L and C6 brain tumors. Brain Res 659(1–2):62–66PubMedCrossRefGoogle Scholar
  8. 8.
    Preston E, Webster J (2002) Differential passage of [14C]sucrose and [3H]inulin across rat blood-brain barrier after cerebral ischemia. Acta Neuropathol 103(3):237–242PubMedCrossRefGoogle Scholar
  9. 9.
    Loveless ME et al (2011) A quantitative comparison of the influence of individual versus population-derived vascular input functions on dynamic contrast enhanced-MRI in small animals. Magn Reson Med 67(1):226–236PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Cha S et al (2003) Dynamic, contrast-enhanced perfusion MRI in mouse gliomas: correlation with histopathology. Magn Reson Med 49(5):848–855PubMedCrossRefGoogle Scholar
  11. 11.
    Matuskova M et al (2009) HSV-tk expressing mesenchymal stem cells exert bystander effect on human glioblastoma cells. Cancer Lett 290(1):58–67PubMedCrossRefGoogle Scholar
  12. 12.
    Hata, N., et al., 2010, Platelet-derived growth factor BB mediates the tropism of human mesenchymal stem cells for malignant gliomas. Neurosurgery. 66(1): p. 144–156; discussion 156–157Google Scholar
  13. 13.
    Pardridge WM (2007) Drug targeting to the brain. Pharm Res 24(9):1733–1744PubMedCrossRefGoogle Scholar
  14. 14.
    Szatmari T et al (2006) Detailed characterization of the mouse glioma 261 tumor model for experimental glioblastoma therapy. Cancer Sci 97(6):546–553PubMedCrossRefGoogle Scholar
  15. 15.
    Branle F et al (2002) Evaluation of the efficiency of chemotherapy in in vivo orthotopic models of human glioma cells with and without 1p19q deletions and in C6 rat orthotopic allografts serving for the evaluation of surgery combined with chemotherapy. Cancer 95(3):641–655PubMedCrossRefGoogle Scholar
  16. 16.
    Vandeputte C et al (2011) Characterization of the inflammatory response in a photothrombotic stroke model by MRI: implications for stem cell transplantation. Mol Imaging Biol 13(4):663–671PubMedCrossRefGoogle Scholar
  17. 17.
    Maes W et al (2009) DC vaccination with anti-CD25 treatment leads to long-term immunity against experimental glioma. Neuro Oncol 11(5):529–542PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Jain RK et al (2007) Angiogenesis in brain tumours. Nat Rev Neurosci 8(8):610–622PubMedCrossRefGoogle Scholar
  19. 19.
    Lee SW et al (2006) Blood-brain barrier interfaces and brain tumors. Arch Pharm Res 29(4):265–275PubMedCrossRefGoogle Scholar
  20. 20.
    Juratli TA, Schackert G, Krex D (2013) Current status of local therapy in malignant gliomas—a clinical review of three selected approaches. Pharmacol Ther 139(3):341–358PubMedCrossRefGoogle Scholar
  21. 21.
    Belot N et al (2001) Molecular characterization of cell substratum attachments in human glial tumors relates to prognostic features. Glia 36(3):375–390PubMedCrossRefGoogle Scholar
  22. 22.
    Lamoral-Theys D et al (2010) Long-term temozolomide treatment induces marked amino metabolism modifications and an increase in TMZ sensitivity in Hs683 oligodendroglioma cells. Neoplasia 12(1):69–79PubMedCentralPubMedGoogle Scholar
  23. 23.
    Wolburg H et al (2012) The disturbed blood-brain barrier in human glioblastoma. Mol Aspects Med 33(5–6):579–589PubMedCrossRefGoogle Scholar
  24. 24.
    Mathieu V et al (2008) Combining bevacizumab with temozolomide increases the antitumor efficacy of temozolomide in a human glioblastoma orthotopic xenograft model. Neoplasia 10(12):1383–1392PubMedCentralPubMedGoogle Scholar
  25. 25.
    Sturm D et al (2012) Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cancer Cell 22(4):425–437PubMedCrossRefGoogle Scholar
  26. 26.
    Szerlip NJ et al (2011) Intratumoral heterogeneity of receptor tyrosine kinases EGFR and PDGFRA amplification in glioblastoma defines subpopulations with distinct growth factor response. Proc Natl Acad Sci USA 109(8):3041–3046CrossRefGoogle Scholar
  27. 27.
    Barajas RF Jr et al (2012) Regional variation in histopathologic features of tumor specimens from treatment-naive glioblastoma correlates with anatomic and physiologic MR Imaging. Neuro Oncol 14(7):942–954PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Kremer S et al (2013) Evaluation of an albumin-binding gadolinium contrast agent in multiple sclerosis. Neurology 81(3):206–210PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Cindy Leten
    • 1
    • 2
  • Tom Struys
    • 1
    • 3
  • Tom Dresselaers
    • 1
    • 2
  • Uwe Himmelreich
    • 1
    • 2
  1. 1.Department of Imaging and Pathology, Biomedical MRIKU LeuvenLouvainBelgium
  2. 2.Molecular Small Animal Imaging CenterKU LeuvenLouvainBelgium
  3. 3.Biomedical Research Institute Lab of HistologyUniversity HasseltHasseltBelgium

Personalised recommendations