Advertisement

Journal of Neuro-Oncology

, Volume 118, Issue 2, pp 225–238 | Cite as

Proteomic analyses of CSF aimed at biomarker development for pediatric brain tumors

  • Nardin Samuel
  • Marc Remke
  • James T. Rutka
  • Brian Raught
  • David Malkin
Topic Review

Abstract

Primary brain tumors cumulatively represent the most common solid tumors of childhood and are the leading cause of cancer related death in this age group. Traditionally, molecular findings and histological analyses from biopsies of resected tumor tissue have been used for diagnosis and classification of these diseases. However, there is a dearth of useful biomarkers that have been validated and clinically implemented for pediatric brain tumors. Notably, diseases of the central nervous system (CNS) can be assayed through analysis of cerebrospinal fluid (CSF) and as such, CSF represents an appropriate medium to obtain liquid biopsies that can be informative for diagnosis, disease classification and risk stratification. Proteomic profiling of pediatric CNS malignancies has identified putative protein markers of disease, yet few effective biomarkers have been clinically validated or implemented. Advances in protein quantification techniques have made it possible to conduct such investigations rapidly and accurately through proteome-wide analyses. This review summarizes the current literature on proteomics in pediatric neuro-oncology and discusses the implications for clinical applications of proteomics research. We also outline strategies for translating effective CSF proteomic studies into clinical applications to optimize the care of this patient population.

Keywords

Proteomics Cerebrospinal fluid (CSF) Pediatric Neuro-oncolgy Biomarker 

Notes

Acknowledgments

The authors would like to acknowledge Dr. Thomas J. Hudson for his critical review of the manuscript. NS is funded in part by a Scholarship from the McLaughlin Center for Molecular Medicine and the Hernandez Family Fellowship for Oncology Research.

Disclosure Statement

The authors have no conflicts of interest to disclose.

References

  1. 1.
    Howlader N, Noone AM, Krapcho M, Garshell J, Neyman N, Altekruse SF, Kosary CL, Yu M, Ruhl J, Tatalovich Z, Cho H, Mariotto A, Lewis DR, Chen HS, Feuer EJ, Cronin KA (eds). SEER Cancer Statistics Review, 1975–2010, National Cancer Institute. Bethesda, http://seer.cancer.gov/csr/1975_2010/, based on November 2012 SEER data submission, posted to the SEER web site, December 2013
  2. 2.
    Astrakas LG, Zurakowski D, Tzika AA, Zarifi MK, Anthony DC, Girolami UD, Tarbell NJ, Black PM (2004) Noninvasive magnetic resonance spectroscoping imaging biomarkers to predict the clinical grade of pediatric brain tumors. Clin Cancer Res 10:8220PubMedCrossRefGoogle Scholar
  3. 3.
    Rifai N, Gillette MA, Carr SA (2006) Protein biomarker discovery and validation: the long and uncertain path to clinical utility. Nat Biotechnol 24:971–983PubMedCrossRefGoogle Scholar
  4. 4.
    van Dijk KD, Teunissen CE, Drukarch B, Jimenez CR, Groenewegen HJ, Berendse HW, van de Berg WD (2010) Diagnostic cerebrospinal fluid biomarkers for Parkin’s disease: a pathogenetically based approach. Neurobiol Dis 39(3):229–241PubMedCrossRefGoogle Scholar
  5. 5.
    Nishizaki T, Kajiwara K, Adachi N, Tsuha M, Nakayama H, Ohshita N, Ikeda N, Ito H, Suzuki M (2001) Detection of craniospinal dissemination of intracranial germ cell tumors based on serum and cerebrospinal fluid levels of tumor markers. J Clin Neurosci 8(1):27–30PubMedCrossRefGoogle Scholar
  6. 6.
    Seregni E, Massimino M, Nerini Molteni S, Pallotti F, van der Hiel B, Cefalo G, Spreafico F, Fossati F, Bombardieri E (2002) Serum and cerebrospinal fluid human chorionic gonadotropin (hCG) and alpha-fetoprotein (AFP) in intracranial germ cell tumors. Int J Biol Markers 17(2):112–118PubMedGoogle Scholar
  7. 7.
    Legault G, Allen JC (2013) Potential role of ventricular tumor markers in CNS germ cell tumors. Pediatr Blood Cancer 60(10):1647–1650. doi: 10.1002/pbc.24620 PubMedCrossRefGoogle Scholar
  8. 8.
    Ispas CR, Crivat G, Andreescu S (2012) Review: recent developments in enzyme-based biosensors for biomedical analysis. Anal Letts 45(168):186Google Scholar
  9. 9.
    Sigdel TK, Gao X, Sarwal MM (2012) Protein and peptide biomarkers in organ transplantation. Biomark Med 6(3):259. doi: 10.2217/bmm.12.29 PubMedCrossRefGoogle Scholar
  10. 10.
    Blennow K, Hampel H, Weiner M, Zetterberg H (2010) Cerebrospinal fluid and plasma biomarkers in Alzheimer disease. Nat Rev Neurol 6(3):131–144. doi: 10.1038/nrneurol.2010.4 PubMedCrossRefGoogle Scholar
  11. 11.
    Parnetti L, Castrioto A, Chiassernini D, Persichetti E, Tambasco N, El-Agnaf O, Calabresi P (2013) Cerebrospinal fluid biomarkers in Parkinson disease. Nat Rev Neurol 9(3):131–140. doi: 10.1038/nrneurol.2013.10 PubMedCrossRefGoogle Scholar
  12. 12.
    Allen J, Chacko J, Donahue B, Dhall G, Kretschmar C, Jakacki R, Holmes E, Pollack I (2012) Diagnostic sensitivity of serum and lumbar CSF bHCG in newly diagnosed CNS germinoma. Pediatr Blood Cancer 59(7):1180–1182. doi: 10.1002/pbc.24097 PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Watanabe S, Aihara Y, Kikuno A, Sato T, Komoda T, Kubo O, Amano K, Okada Y, Koyamaishi Y (2012) A highly sensitive and specific chemiluminescent enzyme immunoassay for placental alkaline phosphatase in the cerebrospinal fluid of patients with intracranial germinomas. Pediatr Neurosurg 48(3):141–145. doi: 10.1159/000345632 PubMedCrossRefGoogle Scholar
  14. 14.
    Rosty C, Christa L, Kuzdzal S, Baldwin WM, Zahurak ML, Carnot F, Chan DW, Canto M, Lillemoe KD, Cameron JL, Yeo CJ, Hruban RH, Goggins M (2002) Identification of hepatocarcinoma-intestine-pancreas/pancreatitis-associated protein I as a biomarker for pancreatic ductal adenocarcinoma by protein biochip technology. Cancer Res 62(6):1868–1875PubMedGoogle Scholar
  15. 15.
    Begcevic I, Kosanam H, Martinez-Morillio E, Dimitromanolaskis A, Diamandis P, Kuzmanov U, Hazrati LN, Diamandis EP (2013) Semiquantitative proteomic analysis of human hippocampal tissues from Alzheimer’s disease and age-matched control brain. Clin Proteomics 10(1):5. doi: 10.1186/1559-0275-10-5 PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Saratsis AM, Kambhampati M, Snyder K, Yadavilli S, Devaney JM, Harmon B, Hall J, Raabe EH, An P, Weingart M, Rood BR, Magge SN, Macdonald TJ, Packer RJ, Nazarian J (2013) Comparative multidimensional molecular analyses of pediatric diffuse intrinsic pontine glioma reveals distinct molecular subtypes. Acta Neuropathol [Epub ahead of print]Google Scholar
  17. 17.
    Whitin JC, Jang T, Merchant M, Yu TT, Lau K, Recht B, Cohen HJ, Recht L (2012) Alterations in cerebrospinal fluid proteins in a presymptomatic primary glioma model. PLoS ONE 7(11):e49724. doi: 10.1371/journal.pone.0049724 PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Khwaja FW, Nolen JD, Mendrinos SE, Lewis MM, Olson JJ, Pohl J, Van Meir EG, Ritchie JC, Brat DJ (2006) Proteomic analysis of cerebrospinal fluid discriminates malignant and nonmalignant disease of the central nervous system and identifies specific protein markers. Proteomics 6(23):6277–6287PubMedCrossRefGoogle Scholar
  19. 19.
    Weisher B, Bernheardt W (1978) Protein fractions of lumbar cisternal and ventribular cerebrospinal fluid. Separate areas of reference. J Neurol Sci 37:205–214CrossRefGoogle Scholar
  20. 20.
    Thompson EJ, Keir G (1990) Laboratory investigation of cerebrospinal fluid proteins. Ann Clin Biochem 5:425–435CrossRefGoogle Scholar
  21. 21.
    Stoop MP, Coulier L, Rosenling T, Shi S, Smolinska AM, Buydens L, Ampt K, Stingl C, Dane A, Muliwiik B, Luitwieler RL, Sillevis Smith PA, Hintzen RQ, Bischoff R, Wimenga SS, Hankemeier T, van Gool AJ, Luider TM (2010) Mol Cell Proteomics 9(9): 2063–2075. doi:  10.1074/mcp.M900877-MCP200
  22. 22.
    Waybright T, Avellino AM, Ellenbogen RG, Hollinger BJ, Veenstra TD, Morrison RS (2010) Characterization of the human ventricular cerebrospinal fluid proteome obtained from hydrocephalus patients. J Proteomics 73(6):1156–1162. doi: 10.1016/j.jprot.2010.02.004 PubMedCrossRefGoogle Scholar
  23. 23.
    Römpp A, Dekker L, Taban I, Jenster G, Boogerd W, Bonfrer H, Spengler B, Heeren R, Smitt PS, Luider TM (2007) Identification of leptomeningeal metastasis-related proteins in cerebrospinal fluid of patients with breast cancer by a combination of MALDI-TOF, MALDI-FTICR and nanoLC-FTICR MS. Proteomics 7(3):474–481PubMedCrossRefGoogle Scholar
  24. 24.
    Brandsma D, Voest EE, de Jager W, Bonfrer H, Algra A, Boogerd W, Korse T, Reijneveld JC, Verbeek MM, Rijkers G, Taphoorn MJ (2006) CSF protein profiling using multiplex immuno-assay: a potential new diagnostic tool for leptomeningeal metastatses. J Neurol 253(9):1177–1184PubMedCrossRefGoogle Scholar
  25. 25.
    Scott BJ, Douglas VC, Tihan T, Rubenstein JL, Josephson SA (2013) A systematic approach to the diagnosis of suspected central nervous system lymphoma. JAMA Neurol 70(3):311–319. doi: 10.1001/jamaneurol.2013.606 PubMedCrossRefGoogle Scholar
  26. 26.
    Tang YT, Jiang F, Guo L, Si MY, Jiao XY (2013) The soluble VEGF receptor 1 and 2 expression in cerebral spinal fluid as an indicator for leukemia central nervous system metastasis. J Neurooncol 112(3):329–338. doi: 10.1007/s11060-013-1066-x PubMedCrossRefGoogle Scholar
  27. 27.
    Roy S, Josephson SA, Fridlyand J, Karch J, Kadoch C, Karrim J, Damon L, Treseler P, Kunwar S, Schuman MA, Jones T, Becker CH, Schulman H, Rubenstein JL (2008) Protein biomarker identification in the CSF of patients with CNS lymphoma. J Clin Oncol 26(1):96–105PubMedCrossRefGoogle Scholar
  28. 28.
    Zheng PP, Luider TM, Pieters R, Avezaat CJ, van den Bent MJ, Sillevis Smitt PA, Kros JM (2003) Identification of tumor-related protein by proteomic analysis of cerebrospinal fluid from patients with primary brain tumors. J Neuropathol Exp Neurol 62(8):855–862PubMedGoogle Scholar
  29. 29.
    Kim JH, Lee SK, Yoo YC, Park NH, Park DB, Yoo JS, An HJ, Park YM, Cho KG (2012) Proteome analysis of human cerebrospinal fluid as a diagnostic biomarker in patients with meningioma. Med Sci Monit 18(11):450–460CrossRefGoogle Scholar
  30. 30.
    Peles E, Lidar Z, Simon AJ, Grossman R, Nass D, Ram Z (2004) Angiogenic factors in the cerebrospinal fluid of patients with astrocytic brain tumors. Neurosurgery 55(3):562–567PubMedCrossRefGoogle Scholar
  31. 31.
    Khwaja FW, Reed MS, Olson JJ, Scmotzer BJ, Gillespie GY, Guha A, Groves MD, Kesari S, Pohl K, Van Meri EG (2007) Proteomic identification of biomarkers in the cerebrospinal fluid (CSF) of astrocytoma patients. J Proteome Res 6(2):559–570PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Schuhmann MU, Zucht HD, Nassimi R, Heine G, Schneekloth CG, Stuerenburg HJ, Selle H (2010) Peptide screening of cerebrospinal fluid in patients with glioblastoma multiforme. Eur J Surg Oncol 36(2):201–207. doi: 10.1016/j.ejso.2009.07.010 PubMedCrossRefGoogle Scholar
  33. 33.
    Ohnishi M, Matsumoto T, Nagashio R, Kageyama T, Utsuki S, Oka H, Okayasu I, Sato Y (2009) Proteomics of tumor-specific proteins in cerebrospinal fluid of patients with astrocytoma: usefulness of gelsolin protein. Pathol Int 59(11):797–803. doi: 10.1111/j.1440-1827.2009.02447.x PubMedCrossRefGoogle Scholar
  34. 34.
    Zhu W, Smith JW, Huang CM (2010) Mass spectrometry-based label-free quantitative proteomics. J Biomed Biotechnol 2010:840518. doi: 10.1155/2010/840518 PubMedCentralPubMedGoogle Scholar
  35. 35.
    Kroksveen AC, Opsahl JA, Aye TT, Ulvik RJ, Berven FS (2011) Proteomics of human cerebrospinal fluid: discovery and verification of biomarker candidates in neurodegenerative diseases using quantitative proteomics. J Proteomics 74(4):371–388. doi: 10.1016/j.jprot.2010.11.010 PubMedCrossRefGoogle Scholar
  36. 36.
    Paweletz CP, Wiener MC, Bondarenko AY, Yates NA, Song Q, Liaw A, Lee AY, Hunt BT, Henle ES, Meng F, Sleph HF, Holahan M, Sanaranarayanan S, Simon AJ, Settlage RE, Sachs JR, Shearman M, Sachs AB, Cook JJ, Hendrickson RC (2010) Application of an end-to-end biomarker discovery platform to identify target engagement biomarkers in cerebrospinal fluid by high resolution differential mass spectrometry. J Proteome Res 9(3):1392–1401. doi: 10.1021/pr900925d PubMedCrossRefGoogle Scholar
  37. 37.
    Blonder J, Issaq HI, Veenstra TD (2011) Proteomic biomarker discovery: it’s more than just mass spectrometry. Electrophoresis 32(13):1541–1548. doi: 10.1002/elps.201000585 PubMedGoogle Scholar
  38. 38.
    Rajagopal MU, Hathout Y, MacDonald TJ, Kieran MW, Gururangan S, Blaney SM, Phillips P, Packer R, Gordish-Dressman H, Rood BR (2011) Proteomic profiling of cerebrospinal fluid identifies prostaglandin D2 synthase as a putative biomarker for pediatric medulloblastoma: a pediatric brain tumor consortium study. Proteomics 11(5):935–943. doi: 10.1002/pmic.201000198 PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Saratsis AM, Yadavilli S, Magge S, Rood BR, Perez J, Hill DA, Hwang E, Kilburn L, Packer RJ, Nazarian J (2012) Insights into pediatric diffuse intrinsic pontine glioma through proteomic analysis of cerebrospinal fluid. Neuro Oncol 14(5):547–560. doi: 10.1093/neuonc/nos067 PubMedCrossRefGoogle Scholar
  40. 40.
    Desiderio C, D’Angelo L, Rossetti DV, Iavarone F, Giardina B, Castagnola M, Massimi L, Tamburrini G, Di Rocco C (2012) Cerebrospinal fluid top-down proteomics evidenced the potential biomarker role of LVV- and VV-hemorphin-7 in posterior cranial fossa pediatric brain tumors. Proteomics 12(13):2158–2166. doi: 10.1002/pmic.201100499 PubMedCrossRefGoogle Scholar
  41. 41.
    Saso L, Leone MG, Sorrentino C, Giacomelli S, Silvestrini B, Grima J, Li JC, Samy E, Mruk D, Cheng CY (1998) Quantification of prostaglandin D synthetase in cerebrospinal fluid: a potential biomarker for brain tumor. Biochem Mol Biol Int 46(4):643–656PubMedGoogle Scholar
  42. 42.
    Huang YC, Lyu RK, Tseng MY, Chang HS, Hsu WC, Kuo HC, Chu CC, Wu YR, Ro LS, Huang CC, Chen CM (2009) Decreased intrathecal synthesis of prostaglandin D2 synthase in the cerebrospinal fluid of patients with acute inflammatory demyelinating polyneuropathy. J Neuroimmunol 206(1–2):100–105. doi: 10.1016/j.jneuroim.2008.10.011 PubMedCrossRefGoogle Scholar
  43. 43.
    de Bont JM, Vanderstichele H, Reddingius RE, Pieters R, van Gool SW (2008) Increased total-Tau levels in cerebrospinal fluid of pediatric hydrocephalus and brain tumor patients. Eur J Paediatr Neurol 12(4):334–341PubMedCrossRefGoogle Scholar
  44. 44.
    Walker DA, Punt JA, Sokal M (1999) Clinical management of brain stem glioma. Arch Dis Child 80(6):558–564PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Leach PA, Estilin EJ, Coope DJ, Thorne JA, Kamaly-Asl ID (2008) Diffuse brainstem gliomas in children: should we or shouldn’t we biopsy? Br J Neurosurg 22(5):619–624. doi: 10.1080/02688690802366198 PubMedCrossRefGoogle Scholar
  46. 46.
    Zagzag D, Miller DC, Knopp E, Farmer JP, Lee M, Biria S, Pellicer A, Epstein FJ, Allen JC (2000) Primitive neuroectodermal tumors of the brainstem: investigation of seven cases. Pediatrics 106(5):1045–1053PubMedCrossRefGoogle Scholar
  47. 47.
    Rutka JT (2012) Biopsy of diffuse intrinsic pontine gliomas? J Neurosurg Pediatr 10(2):79–80. doi: 10.3171/2012.2.PEDS1237 PubMedCrossRefGoogle Scholar
  48. 48.
    Fuzéry AK, Levin J, Chan MM, Chang DW (2013) Translation of proteomic biomarkers into FDA approved cancer diagnostics: issues and challenges. Clin Proteomics 10(1):13. doi: 10.1186/1559-0275-10-13 PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Russell MD, Young AMH, Karri SK (2013) Biomarkers of pediatric brain tumors. Front Pediatr 1(7):1–7. doi: 10.3389/fped.2013.00007 Google Scholar
  50. 50.
    Waybright TJ (2013) Preparation of human cerebrospinal fluid for proteomics barker analysis. Methods Mol Biol 1002:61–70. doi: 10.1007/978-1-62703-360-2_5 PubMedCrossRefGoogle Scholar
  51. 51.
    Petzold A (2006) Sharpe LT, Keir G (2006) Spectrophotometry for cerebrospinal fluid pigment analysis. Neurocrit Care 4:153–162PubMedCrossRefGoogle Scholar
  52. 52.
    Berven FS, Kroksveen AC, Berle M, Rajalahti T, Flikka K, Arneberg R, Myhr KM, Vedeler C, Kvalheim OM, Ulvik RJ (2007) Pre-analytical influence on the low molecular weight cerebrospinal fluid proteome. Proteomics Clin Appl 1(7):699–711. doi: 10.1002/prca.200700126 PubMedCrossRefGoogle Scholar
  53. 53.
    Teunissen CE, Petzold A, Bennett JL, Berven FS, Brundin L, Comabella M, Franciotta D, Frederiksen JL, Fleming JO, Furlan R, Hintzen RQ, Hughes SG, Johnson MH, Krasulova E, Kuhle J, Magnone MC, Rajda C, Rejdak K, Schmidt HK, van Pesch V, Waubant E, Wolf C, Giovannoni G, Hemmer B, Tumani H, Deisenhammer F (2009) A consensus protocol for the standardization of cerebrospinal fluid collection and biobanking. Neurology 73(22):1914–1922. doi: 10.1212/WNL.0b013e318c47cc2 PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    Carrette O, Burkhard PR, Hughes S, Hochstrasser DF, Sanchez JC (2005) Truncated cystatin C in cerebrospinal fluid: technical artifact or biological process? Proteomics 5:3060–3065PubMedCrossRefGoogle Scholar
  55. 55.
    Hebert AS, Richards AL, Bailey DJ, Ulbrich A, Coughlin EE, Westphall MS, Coon JJ (2014) The one hour yeast proteome. Mol Cell Protemoics 13(1):339–347. doi: 10.1074/mcp.M113.034769 CrossRefGoogle Scholar
  56. 56.
    Butcher EC, Berg EL, Kunkel EJ (2004) Systems biology in drug discovery. Nat Biotechnol 22(10):1253–1259PubMedCrossRefGoogle Scholar
  57. 57.
    de Bont JM, den Boer ML, Reddingius RE, Jansen J, Passier M, van Schaik RH, Kros JM, Sillevis Smtt PA, Luider TH, Pieters R (2006) Identification of apolipoprotein A-II in cerebrospinal fluid of pediatric brain tumor patients by protein expression profiling. Clin Chem 52(8):1501–1509PubMedCrossRefGoogle Scholar
  58. 58.
    Müller HL, Oh Y, Lehrnbecher T, Blum WF, Rosenfeld RG (1994) Insulin-like growth factor-binding protein 2 concentrations in cerebrospinal fluid and serum of children with malignant solid tumors or acute leukemia. J Clin Endocrinol Metab 79(2):428–434PubMedGoogle Scholar
  59. 59.
    Müller HL, Oh Y, Gargosky SE, Lehrnbecher T, Hintz RL, Rosenfeld RG (1993) Concentrations of insulin-like growth factor (IGF)-binding protein-3 (IGFBP-3), IGF and IGFBP-3 protease activity in cerebrospinal fluid of children with leukemia, central nervous system tumor, or meningitis. J Clin Endorcinol Metab 77(5):1113–1119Google Scholar
  60. 60.
    de Bont JM, van Doorn J, Reddingius RE, Graat GH, Passier MM, den Boer ML, Pieters R (2008) Various components of the insulin-like growth factor system in tumor tissue, cerebrospinal fluid and peripheral blood of pediatric medulloblastoma and ependymoma patients. Int J Cancer 123(3):594–600. doi: 10.1002/ijc.23558 PubMedCrossRefGoogle Scholar
  61. 61.
    Kao CL, Chiou SH, Ho DM, Chen YJ, Liu RS, Lo CW, Tsai FT, Lin CH, Ku HH, Yu SM, Wong TT (2005) Elevation of plasma and cerebrospinal fluid osteopontin levels in patients with atypical teratoid/rhabdoid tumor. Am J Clin Pathol 123(2):297–304PubMedCrossRefGoogle Scholar
  62. 62.
    Incesoy-Özdemir S, Sahin G, Bozkurt C, Oren AC, Balkaya E, Ertem U (2013) The relationship between cerebrospinal fluid osteopontin level and central nervous system involvement in childhood acute leukemia. Turk J Pediatr 55(1):42–49PubMedGoogle Scholar
  63. 63.
    Figarelle-Branger D, Dubois C, Chauvin P, De Victor B, Gentet JC, Rougon G (1996) Correlation between polysialtic-neural cell adhesion molecule levels in CSF and medulloblastoma outcomes. J Clin Oncol 14(7):2066–2072Google Scholar
  64. 64.
    Ishii E, Ohga S, Murano I, Kobayashi M, Kimura K, Eguchi H, Akazawa K, Ueda K (1991) Tumor necrosis factor in the cerebrospinal fluid of children with central nervous system leukemia. Leuk Res 15(2–3):143–147PubMedCrossRefGoogle Scholar
  65. 65.
    Miyanohara O, Takeshima H, Kaji M, Hirano H, Sawamura Y, Kochi M, Kurastu J (2002) Diagnostic significance of soluble c-kit in the cerebrospinal fluid of patients with germ cell tumors. J Neurosurg 97(1):177–183PubMedCrossRefGoogle Scholar
  66. 66.
    Dagdemir A, Ertem U, Duru F, Kirazli S (1998) Soluble L-selectin increases in the cerebrospinal fluid prior to meningeal involvement in children with acute lymphoblastic leukemia. Leuk Lymphoma 28(3–4):391–398PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Nardin Samuel
    • 1
    • 2
    • 3
  • Marc Remke
    • 3
  • James T. Rutka
    • 3
    • 4
  • Brian Raught
    • 2
  • David Malkin
    • 2
    • 3
    • 5
  1. 1.MD/PhD Program, Faculty of MedicineUniversity of TorontoTorontoCanada
  2. 2.Department of Medical BiophysicsUniversity of TorontoTorontoCanada
  3. 3.The Hospital for Sick ChildrenTorontoCanada
  4. 4.Division of Neurosurgery, Department of SurgeryUniversity of TorontoTorontoCanada
  5. 5.Department of PediatricsUniversity of TorontoTorontoCanada

Personalised recommendations