Journal of Neuro-Oncology

, Volume 118, Issue 2, pp 289–296 | Cite as

Karyopherin a2 and chromosome region maintenance protein 1 expression in meningiomas: novel biomarkers for recurrence and malignant progression

  • Konstantinos GousiasEmail author
  • Pitt Niehusmann
  • Gerrit H. Gielen
  • Matthias Simon
Clinical Study


The karyopherin protein family comprises importins and exportins which are nucleocytoplasmic shuttling receptors. Increased levels of karyopherin a2 and chromosome region maintenance protein 1 correlate with a higher WHO grade and a poorer prognosis in patients with infiltrative astrocytomas. The aim of this study was to evaluate representative members of importins and exportins (i.e. karyopherin a2 and chromosome region maintenance protein 1) as novel biomarkers for meningiomas of WHO grades I–III. We semiquantitatively analyzed nuclear expression of karyopherin a2, chromosome region maintenance protein 1 and the MIB1 labeling index using immunohistochemistry in 108 primary (44 meningiomas WHO grade I, 48 meningiomas WHO grade II, 16 meningiomas WHO grade III) and 13 recurrent meningiomas. Statistical analysis was performed using standard techniques. Karyopherin a2 (p < 0.001) and chromosome region maintenance protein 1 (p = 0.002) expression correlated significantly with the histological grade. Karyopherin a2 expression correlated with proliferative activity as assessed by the MIB1 index (p < 0.001). Recurrent tumors expressed significantly higher levels of karyopherin a2 (p = 0.045) when compared to primary growths. Multivariate analysis of the overall series as well as of patients with atypical meningiomas identified higher karyopherin a2 (≥5 vs. <5 %) and chromosome region maintenance protein 1 (≥60 vs. 60 %) expression as independent predictors of tumor recurrence. Karyopherin a2 and chromosome region maintenance protein 1 expression may have potential as novel biomarkers for meningiomas.


Meningiomas Recurrence Malignant progression Karyopherin a2 Chromosome region maintenance protein 1 MIB1 




Conflicts of interest

The authors declare no financial disclosures or conflicts of interest.

Supplementary material

11060_2014_1423_MOESM1_ESM.tif (19.7 mb)
Supplementary material 1 (TIFF 20150 kb)
11060_2014_1423_MOESM2_ESM.tif (21 mb)
Supplementary material 2 (TIFF 21471 kb)
11060_2014_1423_MOESM3_ESM.docx (11 kb)
Supplementary material 3 (DOCX 11 kb)


  1. 1.
    Central Brain Tumor Registry of the United States. Accessed 16 October 2013
  2. 2.
    van Alkemade H, de Leau M, Dieleman EM et al (2012) Impaired survival and long-term neurological problems in benign meningioma. Neuro Oncol 14(5):658–666PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Simpson D (1957) The recurrence of intracranial meningiomas after surgical treatment. J Neurol Neurosurg Psychiatry 20(1):22–39PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Rogers L, Gilbert M, Vogelbaum MA (2010) Intracranial meningiomas of atypical (WHO grade II) histology. J Neurooncol 99(3):393–405PubMedCrossRefGoogle Scholar
  5. 5.
    Abry E, Thomassen I, Salvesen O, Torp SH (2010) The significance of Ki-67/MIB-1 labeling index in human meningiomas: a literature study. Pathol Res Pract 206(12):810–815PubMedCrossRefGoogle Scholar
  6. 6.
    Oya S, Kawai K, Nakatomi H, Saito N (2012) Significance of Simpson grading system in modern meningioma surgery: integration of the grade with MIB-1 labeling index as a key to predict the recurrence of WHO Grade I meningiomas. J Neurosurg 117(1):121–128PubMedCrossRefGoogle Scholar
  7. 7.
    Zannini L, Lecis D, Lisanti S et al (2003) Karyophrin- a2 protein interacts with Chk2 and contributes to its nuclear import. J Biol Chem 278:42346–42351PubMedCrossRefGoogle Scholar
  8. 8.
    Tseng SF, Chang CY, Wu KJ, Teng SC (2005) Importin KPNA2 is required for proper nuclear localization and multiple functions of NSB1. J Biol Chem 280:39594–39600PubMedCrossRefGoogle Scholar
  9. 9.
    Chen YC, Su YN, Chou PC et al (2005) Overexpression of NBS1 contributes to transformation through the activation of phosphatidylinositol 3-kinase/Akt. J Biol Chem 280(37):32505–32511PubMedCrossRefGoogle Scholar
  10. 10.
    Kim IS, Kim DH, Han SM et al (2000) Truncated form of importin a identified in breast cancer cell inhibits nuclear import of p53. J Biol Chem 275:23139–23145PubMedCrossRefGoogle Scholar
  11. 11.
    Noetzel E, Rose M, Bornemann J, Gajewski M, Knüchel R, Dahl E (2012) Nuclear transport receptor karyopherin-a2 promotes malignant breast cancer phenotypes in vitro. Oncogene 31(16):2101–2114PubMedCrossRefGoogle Scholar
  12. 12.
    Yashiroda Y, Yoshida M (2003) Nucleo-cytoplasmic transport of proteins as a target for therapeutic drugs. Curr Med Chem 10(9):741–748PubMedCrossRefGoogle Scholar
  13. 13.
    Turner JG, Dawson J, Sullivan DM (2012) Nuclear export of proteins and drug resistance in cancer. Biochem Pharmacol 83(8):1021–1032PubMedCrossRefGoogle Scholar
  14. 14.
    Fukuda M, Asano S, Nakamura T et al (1997) CRM1 is responsible for intracellular transport mediated by the nuclear export signal. Nature 390(6657):308–311PubMedCrossRefGoogle Scholar
  15. 15.
    Inoue H, Kauffman M, Shacham S et al (2013) CRM1 blockade by selective inhibitors of nuclear export attenuates kidney cancer growth. J Urol 189(6):2317–2326PubMedCrossRefGoogle Scholar
  16. 16.
    Etchin J, Sanda T, Mansour MR et al (2013) KPT-330 inhibitor of CRM1 (XPO1)-mediated nuclear export has selective anti-leukaemic activity in preclinical models of T-cell acute lymphoblastic leukaemia and acute myeloid leukaemia. Br J Haematol 161(1):117–127PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Zheng M, Tang L, Huang L et al (2010) Overexpression of karyopherin-2 in epithelial ovarian cancer and correlation with poor prognosis. Obstet Gynecol 116(4):884–891PubMedCrossRefGoogle Scholar
  18. 18.
    Dahl E, Kristiansen G, Gottlob K et al (2006) Molecular profiling of laser-microdissected matched tumor and normal breast tissue identifies karyopherin a2 as a potential novel prognostic marker in breast cancer. Clin Cancer Res 12(13):3950–3960PubMedCrossRefGoogle Scholar
  19. 19.
    van der Watt PJ, Maske CP, Hendricks DT et al (2009) The karyopherin proteins, Crm1 and Karyopherin b1, are overexpressed in cervical cancer and are critical for cancer cell survival and proliferation. Int J Cancer 124:1829–1840PubMedCrossRefGoogle Scholar
  20. 20.
    Mortezavi A, Hermanns T, Seifert HH et al (2011) KPNA2 expression is an independent adverse predictor of biochemical recurrence after radical prostatectomy. Clin Cancer Res 17(5):1111–1121PubMedCrossRefGoogle Scholar
  21. 21.
    Winnepenninckx V, Lazar V, Michiels S et al (2006) Gene expression profiling of primary cutaneous melanoma and clinical outcome. J Natl Cancer Inst 98(7):472–482PubMedCrossRefGoogle Scholar
  22. 22.
    Yao Y, Dong Y, Lin F et al (2009) The expression of CRM1 is associated with prognosis in human osteosarcoma. Oncol Rep 21(1):229–235PubMedGoogle Scholar
  23. 23.
    Forgues M, Difilippantonio MJ, Linke SP et al (2003) Involvement of Crm1 in hepatitis B virus X protein-induced aberrant centriole replication and abnormal mitotic spindles. Mol Cell Biol 23(15):5282–5292PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Gousias K, Becker AJ, Simon M, Niehusmann P (2012) Nuclear karyopherin a2: a novel biomarker for infiltrative astrocytomas. J Neurooncol 109(3):545–553PubMedCrossRefGoogle Scholar
  25. 25.
    Shen A, Wang Y, Zhao Y, Zou L, Sun L, Cheng C (2009) Expression of CRM1 in human gliomas and its significance in p27 expression and clinical prognosis. Neurosurgery 65(1):153–160PubMedCrossRefGoogle Scholar
  26. 26.
    Nguyen KT, Holloway MP, Altura RA (2012) The CRM1 nuclear export protein in normal development and disease. Int J Biochem Mol Biol 3(2):137–151PubMedCentralPubMedGoogle Scholar
  27. 27.
    Teng SC, Wu KJ, Tseng SF, Wong CW, Kao L (2006) Importin KPNA2, NSB1, DNA repair and tumorigenesis. J Mol Histol 37:293–299PubMedCrossRefGoogle Scholar
  28. 28.
    Sotiriou C, Wirapati P, Loi S et al (2006) Gene expression profiling in breast cancer: understanding the molecular basis of histological grade to improve prognosis. J Natl Cancer Inst 98:262–272PubMedCrossRefGoogle Scholar
  29. 29.
    Wang CI, Wang CL, Wang CW et al (2010) Importin subunit alpha-2 is identified as a potential biomarker for non-small cell lung cancer by integration of the cancer cell secretome and tissue transcriptome. Int J Cancer 128(10):2364–2372CrossRefGoogle Scholar
  30. 30.
    Huang WY, Yue L, Qiu WS, Wang LW, Zhou XH, Sun YJ (2009) Prognostic value of CRM1 in pancreas cancer. Clin Invest Med 32(6):E315PubMedGoogle Scholar
  31. 31.
    Noske A, Weichert W, Niesporek S et al (2008) Expression of the nuclear export protein chromosomal region maintenance/exportin 1/Xpo1 is a prognostic factor in human ovarian cancer. Cancer 112(8):1733–1743PubMedCrossRefGoogle Scholar
  32. 32.
    Mair R, Morris K, Scott I, Carroll TA (2011) Radiotherapy for atypical meningiomas. J Neurosurg 115(4):811–819PubMedCrossRefGoogle Scholar
  33. 33.
    Gluz O, Wild P, Meiler R et al (2008) Nuclear karyopherin a2 expression predicts poor survival in patients with advanced breast cancer irrespective of treatment intensity. Int J Cancer 123:1433–1438PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Konstantinos Gousias
    • 1
    Email author
  • Pitt Niehusmann
    • 2
  • Gerrit H. Gielen
    • 2
  • Matthias Simon
    • 1
  1. 1.Department of NeurosurgeryUniversity Hospital of BonnBonnGermany
  2. 2.Department of NeuropathologyUniversity Hospital of BonnBonnGermany

Personalised recommendations