Advertisement

Journal of Neuro-Oncology

, Volume 117, Issue 2, pp 321–327 | Cite as

An analysis of radiation necrosis of the central nervous system treated with bevacizumab

  • Karen Tye
  • Herbert H. Engelhard
  • Konstantin V. Slavin
  • M. Kelly Nicholas
  • Steven J. Chmura
  • Young Kwok
  • Dominic S. Ho
  • Ralph R. Weichselbaum
  • Matthew KoshyEmail author
Clinical Study

Abstract

Radiation necrosis is a devastating complication following radiation to the central nervous system. The purpose of this study was to perform a comprehensive analysis of cases in the literature using bevacizumab, a monoclonal antibody against vascular endothelial growth factor, as treatment for radiation necrosis. A MEDLINE/PubMed search of articles about the use of bevacizumab for radionecrosis treatment yielded 16 studies published between 2007 and 2012. Data was summarized according to patient characteristics, treatment received and outcomes measured. A total of 71 unique cases were identified that met the inclusion criteria. The median age at the time of treatment with bevacizumab was 47 years. The most common tumors treated were glioblastoma (31 %), anaplastic glioma (14 %), and metastatic brain tumors (15 %). The median time from ending radiotherapy to starting treatment with bevacizumab was 11 months and the median follow up time after bevacizumab treatment was 8 months. The median number of cycles of bevacizumab was administered was 4, and the median dosage of bevacizumab was 7.5 mg/kg. The median time elapsed between cycles of bevacizumab was 2 weeks. Overall, pre and post treatment imaging revealed a median decrease in T1 contrast enhancement of 63 %, and a 59 % median decrease in T2/FLAIR signal abnormality. Treatment with bevacizumab resulted in a significant radiographic response for patients with radionecrosis. The median dosage of bevacizumab of 7.5 mg/kg for four cycles every 2 weeks should be considered as a treatment option in this patient population.

Keywords

Bevacizumab Radiation necrosis Radiation Brain tumors 

Notes

Conflict of interest

The authors’ report that Dr. Kelly Nicholas is a consultant for Genentech.

References

  1. 1.
    Levin VA, Bidaut L, Hou P, Kumar AJ, Wefel JS, Bekele BN, Grewal J, Prabhu S, Loghin M, Gilbert MR et al (2011) Randomized double-blind placebo-controlled trial of bevacizumab therapy for radiation necrosis of the central nervous system. Int J Radiat Oncol Biol Phys 79:1487–1495. doi: 10.1016/j.ijrobp.2009.12.061 PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Furuse M, Nonoguchi N, Kawabata S, Yoritsune E, Takahashi M, Inomata T, Kuroiwa T, Miyatake S (2013) Bevacizumab treatment for symptomatic radiation necrosis diagnosed by amino acid PET. Jpn J Clin Oncol 43:337–341. doi: 10.1093/jjco/hys231 PubMedCrossRefGoogle Scholar
  3. 3.
    Giglio P, Gilbert MR (2003) Cerebral radiation necrosis. Neurologist 9:180–188. doi: 10.1097/01.nrl.0000080951.78533.c4 PubMedCrossRefGoogle Scholar
  4. 4.
    Li YQ, Chen P, Jain V, Reilly RM, Wong CS (2004) Early radiation-induced endothelial cell loss and blood-spinal cord barrier breakdown in the rat spinal cord. Radiat Res 161:143–152PubMedCrossRefGoogle Scholar
  5. 5.
    Nordal RA, Nagy A, Pintilie M, Wong CS (2004) Hypoxia and hypoxia-inducible factor-1 target genes in central nervous system radiation injury: a role for vascular endothelial growth factor. Clin Cancer Res 10:3342–3353. doi: 10.1158/1078-0432.CCR-03-0426 PubMedCrossRefGoogle Scholar
  6. 6.
    Nonoguchi N, Miyatake S, Fukumoto M, Furuse M, Hiramatsu R, Kawabata S, Kuroiwa T, Tsuji M, Fukumoto M, Ono K (2011) The distribution of vascular endothelial growth factor-producing cells in clinical radiation necrosis of the brain: pathological consideration of their potential roles. J Neurooncol 105:423–431. doi: 10.1007/s11060-011-0610-9 PubMedCrossRefGoogle Scholar
  7. 7.
    Baker DG, Krochak RJ (1989) The response of the microvascular system to radiation: a review. Cancer Investig 7:287–294CrossRefGoogle Scholar
  8. 8.
    Remler MP, Marcussen WH, Tiller-Borsich J (1986) The late effects of radiation on the blood brain barrier. Int J Radiat Oncol Biol Phys 12:1965–1969PubMedCrossRefGoogle Scholar
  9. 9.
    Rahmathulla G, Marko NF, Weil RJ (2013) Cerebral radiation necrosis: a review of the pathobiology, diagnosis and management considerations. J Clin Neurosci 20:485–502. doi: 10.1016/j.jocn.2012.09.011 PubMedCrossRefGoogle Scholar
  10. 10.
    Gonzalez J, Kumar AJ, Ca Conrad, Va Levin (2007) Effect of bevacizumab on radiation necrosis of the brain. Int J Radiat Oncol Biol Phys 67:323–326. doi: 10.1016/j.ijrobp.2006.10.010 PubMedCrossRefGoogle Scholar
  11. 11.
    Wong ET, Huberman M, Lu X, Mahadevan A (2008) Bevacizumab reverses cerebral radiation necrosis. J Clin Oncol 26:5649–5650. doi: 10.1200/JCO.2008.19.1866 PubMedCrossRefGoogle Scholar
  12. 12.
    Liu AK, Macy ME, Foreman NK (2009) Bevacizumab as therapy for radiation necrosis in four children with pontine gliomas. Int J Radiat Oncol Biol Phys 75:1148–1154. doi: 10.1016/j.ijrobp.2008.12.032 PubMedCrossRefGoogle Scholar
  13. 13.
    Torcuator R, Zuniga R, Mohan YS, Rock J, Doyle T, Anderson J, Gutierrez J, Ryu S, Jain R, Rosenblum M et al (2009) Initial experience with bevacizumab treatment for biopsy confirmed cerebral radiation necrosis. J Neurooncol 94:63–68. doi: 10.1007/s11060-009-9801-z PubMedCrossRefGoogle Scholar
  14. 14.
    Jeyaretna DS, Curry WT, Batchelor TT, Stemmer-Rachamimov A, Plotkin SR (2011) Exacerbation of cerebral radiation necrosis by bevacizumab. J Clin Oncol 29:e159–e162. doi: 10.1200/JCO.2010.31.4815 PubMedCrossRefGoogle Scholar
  15. 15.
    Benoit A, Ducray F, Cartalat-Carel S, Psimaras D, Ricard D, Honnorat J (2011) Favorable outcome with bevacizumab after poor outcome with steroids in a patient with temporal lobe and brainstem radiation necrosis. J Neurol 258:328–329. doi: 10.1007/s00415-010-5747-5 PubMedCrossRefGoogle Scholar
  16. 16.
    Matuschek C, Bölke E, Nawatny J, Hoffmann TK, Peiper M, Orth K, Gerber PA, Rusnak E, Lammering G, Budach W (2011) Bevacizumab as a treatment option for radiation-induced cerebral necrosis. Strahlenther Onkol 187:135–139. doi: 10.1007/s00066-010-2184-4 PubMedCrossRefGoogle Scholar
  17. 17.
    Sanborn MR, Danish SF, Rosenfeld MR, O’Rourke D, Lee JYK (2011) Treatment of steroid refractory, Gamma Knife related radiation necrosis with bevacizumab: case report and review of the literature. Clin Neurol Neurosurg 113:798–802. doi: 10.1016/j.clineuro.2011.08.007 PubMedCrossRefGoogle Scholar
  18. 18.
    Arratibel-Echarren I, Albright K, Dalmau J, Rosenfeld MR (2011) Use of bevacizumab for neurological complications during initial treatment of malignant gliomas. Neurologia 26:74–80. doi: 10.1016/S2173-5808(11)70017-7 PubMedCrossRefGoogle Scholar
  19. 19.
    DeSalvo MN (2012) Radiation necrosis of the pons after radiotherapy for nasopharyngeal carcinoma: diagnosis and treatment. J Radiol Case Rep 6:9–16. doi: 10.3941/jrcr.v6i7.1108 PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Wang Y, Pan L, Sheng X, Mao Y, Yao Y, Wang E, Zhang N, Dai J (2012) Reversal of cerebral radiation necrosis with bevacizumab treatment in 17 Chinese patients. Eur J Med Res 17:25. doi: 10.1186/2047-783X-17-25 PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Gronier S, Bourg V, Frenay M, Cohen M, Mondot L, Thomas P, Lebrun C (2011) Bevacizumab for the treatment of cerebral radionecrosis. Rev Neurol 167:331–336. doi: 10.1016/j.neurol.2010.10.012 PubMedCrossRefGoogle Scholar
  22. 22.
    McPherson CM, Warnick RE (2004) Results of contemporary surgical management of radiation necrosis using frameless stereotaxis and intraoperative magnetic resonance imaging. J Neurooncol 68:41–47PubMedCrossRefGoogle Scholar
  23. 23.
    Williamson R, Kondziolka D, Kanaan H, Lunsford LD, Flickinger JC (2008) Adverse radiation effects after radiosurgery may benefit from oral vitamin E and pentoxifylline therapy: a pilot study. Stereotact Funct Neurosurg 86:359–366. doi: 10.1159/000163557 PubMedCrossRefGoogle Scholar
  24. 24.
    Rizzoli HV, Pagnanelli DM (1984) Treatment of delayed radiation necrosis of the brain. A clinical observation. J Neurosurg 60:589–594. doi: 10.3171/jns.1984.60.3.0589 PubMedCrossRefGoogle Scholar
  25. 25.
    Leber KA, Eder HG, Kovac H, Anegg U, Pendl G (1998) Treatment of cerebral radionecrosis by hyperbaric oxygen therapy. Stereotact Funct Neurosurg 70(Suppl 1):229–236PubMedCrossRefGoogle Scholar
  26. 26.
    Perez-Espejo MA, Garcia-Fernandez R, Tobarra-Gonzalez BM, Palma-Copete JD, Gonzalez-Lopez A, De la Fuente-Munoz I, Salinas-Ramos J, Felipe-Murcia M, Martinez-Lage JF, Fernandez-Perez J et al (2009) Usefulness of hyperbaric oxygen in the treatment of radionecrosis and symptomatic brain edema after LINAC radiosurgery. Neurocirugia 20:449–453PubMedGoogle Scholar
  27. 27.
    Kang KB, Wang TT, Woon CT, Cheah ES, Moore XL, Zhu C, Wong MC (2007) Enhancement of glioblastoma radioresponse by a selective COX-2 inhibitor celecoxib: inhibition of tumor angiogenesis with extensive tumor necrosis. Int J Radiat Oncol Biol Phys 67:888–896. doi: 10.1016/j.ijrobp.2006.09.055 PubMedCrossRefGoogle Scholar
  28. 28.
    Tsao MN, Li YQ, Lu G, Xu Y, Wong CS (1999) Upregulation of vascular endothelial growth factor is associated with radiation-induced blood-spinal cord barrier breakdown. J Neuropathol Exp Neurol 58:1051–1060PubMedCrossRefGoogle Scholar
  29. 29.
    Gerstner ER, Duda DG, di Tomaso E, Ryg PA, Loeffler JS, Sorensen AG, Ivy P, Jain RK, Batchelor TT (2009) VEGF inhibitors in the treatment of cerebral edema in patients with brain cancer. Nat Rev Clin Oncol 6:229–236. doi: 10.1038/nrclinonc.2009.14 PubMedCrossRefGoogle Scholar
  30. 30.
    Cheung MC, Chan AS, Law SC, Chan JH, Tse VK (2003) Impact of radionecrosis on cognitive dysfunction in patients after radiotherapy for nasopharyngeal carcinoma. Cancer 97:2019–2026. doi: 10.1002/cncr.11295 PubMedCrossRefGoogle Scholar
  31. 31.
    Jain RK (2001) Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy. Nat Med 7:987–989. doi: 10.1038/nm0901-987 PubMedCrossRefGoogle Scholar
  32. 32.
    Dai F, Shu L, Bian Y, Wang Z, Yang Z, Chu W, Gao S (2013) Safety of bevacizumab in treating metastatic colorectal cancer: a systematic review and meta-analysis of all randomized clinical trials. Clin Drug Investig 33:779–788. doi: 10.1007/s40261-013-0125-6 Google Scholar
  33. 33.
    Merkenschlager A, Hirsch W, Syrbe S, Bernhard M, Wurm R (2011) Successful bevacizumab therapy for CNS radiation necrosis after stereotactic radiotherapy of an arteriovenous malformation. Neuropediatrics 42:P046Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Karen Tye
    • 1
  • Herbert H. Engelhard
    • 2
  • Konstantin V. Slavin
    • 2
  • M. Kelly Nicholas
    • 3
  • Steven J. Chmura
    • 4
  • Young Kwok
    • 5
  • Dominic S. Ho
    • 6
  • Ralph R. Weichselbaum
    • 1
    • 4
  • Matthew Koshy
    • 1
    • 4
    Email author
  1. 1.Department of Radiation OncologyUniversity of Illinois at ChicagoChicagoUSA
  2. 2.Department of NeurosurgeryUniversity of Illinois at ChicagoChicagoUSA
  3. 3.Department of NeurologyThe University of ChicagoChicagoUSA
  4. 4.Department of Radiation and Cellular OncologyThe University of ChicagoChicagoUSA
  5. 5.Department of Radiation OncologyUniversity of MarylandBaltimoreUSA
  6. 6.Department of Medical OncologyUniversity of Illinois at ChicagoChicagoUSA

Personalised recommendations