Journal of Neuro-Oncology

, Volume 117, Issue 2, pp 205–215 | Cite as

Role of Akt in human malignant glioma: from oncogenesis to tumor aggressiveness

  • Emmanuel ChautardEmail author
  • Zangbéwendé Guy Ouédraogo
  • Julian Biau
  • Pierre Verrelle
Topic Review


Gathering evidence has revealed that Akt signaling pathway plays an important role in glioma progression and aggressiveness. Among Akt kinases the most studied, Akt1, has been involved in many cellular processes that are in favor of cell malignancy. More recently, the actions of the two other isoforms, Akt2 and Akt3 have emerged in glioma. After a description of Akt pathway activation, we will explore the role of each isoform in malignant glioma that strengthens the current preclinical and clinical studies evaluating the impact of Akt pathway targeting in glioblastomas.


Akt Human malignant glioma Resistance to treatment 



The authors would like to sincerely thank Pr. Laurent Morel and Dr Cyrille Saintenac for their critical reading of this manuscript. CREaT (Cancer Resistance Exploring and Targeting) lab is supported by the Ligue Nationale Contre le Cancer (Comité du Puy De Dôme), by the Institut National du Cancer and by the Region Auvergne. Z. G. O. was the recipient of a fellowship from the Ministère des Enseignements Secondaire et Supérieur, Burkina Faso.

Conflict of interest



  1. 1.
    Ohgaki H, Kleihues P (2005) Epidemiology and etiology of gliomas. Acta Neuropathol 109:93–108PubMedCrossRefGoogle Scholar
  2. 2.
    Legler JM, Ries LA, Smith MA, Warren JL, Heineman EF, Kaplan RS, Linet MS (1999) Cancer surveillance series [corrected]: brain and other central nervous system cancers: recent trends in incidence and mortality. J Natl Cancer Inst 91:1382–1390PubMedCrossRefGoogle Scholar
  3. 3.
    Nikiforova MN, Hamilton RL (2011) Molecular diagnostics of gliomas. Arch Pathol Lab Med 135:558–568PubMedGoogle Scholar
  4. 4.
    Ohgaki H, Kleihues P (2013) The definition of primary and secondary glioblastoma. Clin Cancer Res 19:764–772PubMedCrossRefGoogle Scholar
  5. 5.
    DeAngelis LM, Burger PC, Green SB, Cairncross JG (1998) Malignant glioma: who benefits from adjuvant chemotherapy? Ann Neurol 44:691–695PubMedCrossRefGoogle Scholar
  6. 6.
    Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, Curschmann J, Janzer RC, Ludwin SK, Gorlia T, Allgeier A, Lacombe D, Cairncross JG, Eisenhauer E, Mirimanoff RO (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996PubMedCrossRefGoogle Scholar
  7. 7.
    Shannon AM, Williams KJ (2008) Antiangiogenics and radiotherapy. J Pharm Pharmacol 60:1029–1036PubMedCrossRefGoogle Scholar
  8. 8.
    Bussink J, Kaanders JH, van der Kogel AJ (2003) Tumor hypoxia at the micro-regional level: clinical relevance and predictive value of exogenous and endogenous hypoxic cell markers. Radiother Oncol 67:3–15PubMedCrossRefGoogle Scholar
  9. 9.
    Apetoh L, Ghiringhelli F, Tesniere A, Obeid M, Ortiz C, Criollo A, Mignot G, Maiuri MC, Ullrich E, Saulnier P, Yang H, Amigorena S, Ryffel B, Barrat FJ, Saftig P, Levi F, Lidereau R, Nogues C, Mira JP, Chompret A, Joulin V, Clavel-Chapelon F, Bourhis J, Andre F, Delaloge S, Tursz T, Kroemer G, Zitvogel L (2007) Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat Med 13:1050–1059PubMedCrossRefGoogle Scholar
  10. 10.
    De Ridder M, Verovski VN, Darville MI, Van Den Berge DL, Monsaert C, Eizirik DL, Storme GA (2004) Macrophages enhance the radiosensitizing activity of lipid A: a novel role for immune cells in tumor cell radioresponse. Int J Radiat Oncol Biol Phys 60:598–606PubMedCrossRefGoogle Scholar
  11. 11.
    Coffer PJ, Woodgett JR (1991) Molecular cloning and characterisation of a novel putative protein-serine kinase related to the cAMP-dependent and protein kinase C families. Eur J Biochem 201:475–481PubMedCrossRefGoogle Scholar
  12. 12.
    Jones PF, Jakubowicz T, Pitossi FJ, Maurer F, Hemmings BA (1991) Molecular cloning and identification of a serine/threonine protein kinase of the second-messenger subfamily. Proc Natl Acad Sci USA 88:4171–4175PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Bellacosa A, Testa JR, Staal SP, Tsichlis PN (1991) A retroviral oncogene, akt, encoding a serine-threonine kinase containing an SH2-like region. Science 254:274–277PubMedCrossRefGoogle Scholar
  14. 14.
    Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S (2002) The protein kinase complement of the human genome. Science 298:1912–1934PubMedCrossRefGoogle Scholar
  15. 15.
    Franke TF (2008) PI3K/Akt: getting it right matters. Oncogene 27:6473–6488PubMedCrossRefGoogle Scholar
  16. 16.
    Oh WJ, Wu CC, Kim SJ, Facchinetti V, Julien LA, Finlan M, Roux PP, Su B, Jacinto E (2010) mTORC2 can associate with ribosomes to promote cotranslational phosphorylation and stability of nascent Akt polypeptide. EMBO J 29:3939–3951PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Facchinetti V, Ouyang W, Wei H, Soto N, Lazorchak A, Gould C, Lowry C, Newton AC, Mao Y, Miao RQ, Sessa WC, Qin J, Zhang P, Su B, Jacinto E (2008) The mammalian target of rapamycin complex 2 controls folding and stability of Akt and protein kinase C. EMBO J 27:1932–1943PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Sarbassov DD, Guertin DA, Ali SM, Sabatini DM (2005) Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307:1098–1101PubMedCrossRefGoogle Scholar
  19. 19.
    Feng J, Park J, Cron P, Hess D, Hemmings BA (2004) Identification of a PKB/Akt hydrophobic motif Ser-473 kinase as DNA-dependent protein kinase. J Biol Chem 279:41189–41196PubMedCrossRefGoogle Scholar
  20. 20.
    Memmott RM, Dennis PA (2009) Akt-dependent and -independent mechanisms of mTOR regulation in cancer. Cell Signal 21:656–664PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Mahajan K, Mahajan NP (2012) PI3K-independent AKT activation in cancers: a treasure trove for novel therapeutics. J Cell Physiol 227:3178–3184PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Cantley LC, Neel BG (1999) New insights into tumor suppression: PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase/AKT pathway. Proc Natl Acad Sci USA 96:4240–4245PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Gao X, Lowry PR, Zhou X, Depry C, Wei Z, Wong GW, Zhang J (2011) PI3K/Akt signaling requires spatial compartmentalization in plasma membrane microdomains. Proc Natl Acad Sci USA 108:14509–14514PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Gao T, Furnari F, Newton AC (2005) PHLPP: a phosphatase that directly dephosphorylates Akt, promotes apoptosis, and suppresses tumor growth. Mol Cell 18:13–24PubMedCrossRefGoogle Scholar
  25. 25.
    Seshacharyulu P, Pandey P, Datta K, Batra SK (2013) Phosphatase: PP2A structural importance, regulation and its aberrant expression in cancer. Cancer Lett 335:9–18PubMedCrossRefGoogle Scholar
  26. 26.
    Brognard J, Sierecki E, Gao T, Newton AC (2007) PHLPP and a second isoform, PHLPP2, differentially attenuate the amplitude of Akt signaling by regulating distinct Akt isoforms. Mol Cell 25:917–931PubMedCrossRefGoogle Scholar
  27. 27.
    Chen L, Han L, Shi Z, Zhang K, Liu Y, Zheng Y, Jiang T, Pu P, Jiang C, Kang C (2012) LY294002 enhances cytotoxicity of temozolomide in glioma by down-regulation of the PI3K/Akt pathway. Mol Med Rep 5:575–579PubMedGoogle Scholar
  28. 28.
    Bellacosa A, Kumar CC, Di Cristofano A, Testa JR (2005) Activation of AKT kinases in cancer: implications for therapeutic targeting. Adv Cancer Res 94:29–86PubMedCrossRefGoogle Scholar
  29. 29.
    Bellacosa A, de Feo D, Godwin AK, Bell DW, Cheng JQ, Altomare DA, Wan M, Dubeau L, Scambia G, Masciullo V, Ferrandina G (1995) Benedetti Panici P, Mancuso S, Neri G, Testa JR: Molecular alterations of the AKT2 oncogene in ovarian and breast carcinomas. Int J Cancer 64:280–285PubMedCrossRefGoogle Scholar
  30. 30.
    Cheng JQ, Ruggeri B, Klein WM, Sonoda G, Altomare DA, Watson DK, Testa JR (1996) Amplification of AKT2 in human pancreatic cells and inhibition of AKT2 expression and tumorigenicity by antisense RNA. Proc Natl Acad Sci USA 93:3636–3641PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Cheng JQ, Altomare DA, Klein MA, Lee WC, Kruh GD, Lissy NA, Testa JR (1997) Transforming activity and mitosis-related expression of the AKT2 oncogene: evidence suggesting a link between cell cycle regulation and oncogenesis. Oncogene 14:2793–2801PubMedCrossRefGoogle Scholar
  32. 32.
    Staal SP (1987) Molecular cloning of the akt oncogene and its human homologues AKT1 and AKT2: amplification of AKT1 in a primary human gastric adenocarcinoma. Proc Natl Acad Sci U S A 84:5034–5037PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Nakatani K, Thompson DA, Barthel A, Sakaue H, Liu W, Weigel RJ, Roth RA (1999) Up-regulation of Akt3 in estrogen receptor-deficient breast cancers and androgen-independent prostate cancer lines. J Biol Chem 274:21528–21532PubMedCrossRefGoogle Scholar
  34. 34.
    Mure H, Matsuzaki K, Kitazato KT, Mizobuchi Y, Kuwayama K, Kageji T, Nagahiro S (2010) Akt2 and Akt3 play a pivotal role in malignant gliomas. Neuro Oncol 12:221–232PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Choe G, Horvath S, Cloughesy TF, Crosby K, Seligson D, Palotie A, Inge L, Smith BL, Sawyers CL, Mischel PS (2003) Analysis of the phosphatidylinositol 3′-kinase signaling pathway in glioblastoma patients in vivo. Cancer Res 63:2742–2746PubMedGoogle Scholar
  36. 36.
    Haas-Kogan D, Shalev N, Wong M, Mills G, Yount G, Stokoe D (1998) Protein kinase B (PKB/Akt) activity is elevated in glioblastoma cells due to mutation of the tumor suppressor PTEN/MMAC. Curr Biol 8:1195–1198PubMedCrossRefGoogle Scholar
  37. 37.
    Sugawa N, Ekstrand AJ, James CD, Collins VP (1990) Identical splicing of aberrant epidermal growth factor receptor transcripts from amplified rearranged genes in human glioblastomas. Proc Natl Acad Sci USA 87:8602–8606PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Moscatello DK, Montgomery RB, Sundareshan P, McDanel H, Wong MY, Wong AJ (1996) Transformational and altered signal transduction by a naturally occurring mutant EGF receptor. Oncogene 13:85–96PubMedGoogle Scholar
  39. 39.
    Huang PH, Mukasa A, Bonavia R, Flynn RA, Brewer ZE, Cavenee WK, Furnari FB, White FM (2007) Quantitative analysis of EGFRvIII cellular signaling networks reveals a combinatorial therapeutic strategy for glioblastoma. Proc Natl Acad Sci USA 104:12867–12872PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Mueller S, Phillips J, Onar-Thomas A, Romero E, Zheng S, Wiencke JK, McBride SM, Cowdrey C, Prados MD, Weiss WA, Berger MS, Gupta N, Haas-Kogan DA (2012) PTEN promoter methylation and activation of the PI3K/Akt/mTOR pathway in pediatric gliomas and influence on clinical outcome. Neuro Oncol 14:1146–1152PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Molina JR, Morales FC, Hayashi Y, Aldape KD, Georgescu MM (2010) Loss of PTEN binding adapter protein NHERF1 from plasma membrane in glioblastoma contributes to PTEN inactivation. Cancer Res 70:6697–6703PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Wang H, Zhang W, Huang HJ, Liao WS, Fuller GN (2004) Analysis of the activation status of Akt, NFkappaB, and Stat3 in human diffuse gliomas. Lab Invest 84:941–951PubMedCrossRefGoogle Scholar
  43. 43.
    Antonelli M, Massimino M, Morra I, Garre ML, Gardiman MP, Buttarelli FR, Arcella A, Giangaspero F (2012) Expression of pERK and pAKT in pediatric high grade astrocytomas: correlation with YKL40 and prognostic significance. Neuropathology 32:133–138PubMedCrossRefGoogle Scholar
  44. 44.
    Rodriguez EF, Scheithauer BW, Giannini C, Rynearson A, Cen L, Hoesley B, Gilmer-Flynn H, Sarkaria JN, Jenkins S, Long J, Rodriguez FJ (2011) PI3K/AKT pathway alterations are associated with clinically aggressive and histologically anaplastic subsets of pilocytic astrocytoma. Acta Neuropathol 121:407–420PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Suzuki Y, Shirai K, Oka K, Mobaraki A, Yoshida Y, Noda SE, Okamoto M, Itoh J, Itoh H, Ishiuchi S, Nakano T (2010) Higher pAkt expression predicts a significant worse prognosis in glioblastomas. J Radiat Res 51:343–348PubMedCrossRefGoogle Scholar
  46. 46.
    Holland EC, Celestino J, Dai C, Schaefer L, Sawaya RE, Fuller GN (2000) Combined activation of Ras and Akt in neural progenitors induces glioblastoma formation in mice. Nat Genet 25:55–57PubMedCrossRefGoogle Scholar
  47. 47.
    Sonoda Y, Ozawa T, Aldape KD, Deen DF, Berger MS, Pieper RO (2001) Akt pathway activation converts anaplastic astrocytoma to glioblastoma multiforme in a human astrocyte model of glioma. Cancer Res 61:6674–6678PubMedGoogle Scholar
  48. 48.
    Jung IH, Leem GL, Jung DE, Kim MH, Kim EY, Kim SH, Park HC, Park SW (2013) Glioma is formed by active Akt1 alone and promoted by active Rac1 in transgenic zebrafish. Neuro Oncol 15:290–304PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Koseoglu S, Lu Z, Kumar C, Kirschmeier P, Zou J (2007) AKT1, AKT2 and AKT3-dependent cell survival is cell line-specific and knockdown of all three isoforms selectively induces apoptosis in 20 human tumor cell lines. Cancer Biol Ther 6:755–762PubMedCrossRefGoogle Scholar
  50. 50.
    Nicholson KM, Anderson NG (2002) The protein kinase B/Akt signalling pathway in human malignancy. Cell Signal 14:381–395PubMedCrossRefGoogle Scholar
  51. 51.
    Manning BD, Cantley LC (2007) AKT/PKB signaling: navigating downstream. Cell 129:1261–1274PubMedCentralPubMedCrossRefGoogle Scholar
  52. 52.
    Du K, Montminy M (1998) CREB is a regulatory target for the protein kinase Akt/PKB. J Biol Chem 273:32377–32379PubMedCrossRefGoogle Scholar
  53. 53.
    Ozes ON, Mayo LD, Gustin JA, Pfeffer SR, Pfeffer LM, Donner DB (1999) NF-kappaB activation by tumour necrosis factor requires the Akt serine-threonine kinase. Nature 401:82–85PubMedCrossRefGoogle Scholar
  54. 54.
    Koul D, Shen R, Bergh S, Lu Y, de Groot JF, Liu TJ, Mills GB, Yung WK (2005) Targeting integrin-linked kinase inhibits Akt signaling pathways and decreases tumor progression of human glioblastoma. Mol Cancer Ther 4:1681–1688PubMedCrossRefGoogle Scholar
  55. 55.
    Edwards LA, Thiessen B, Dragowska WH, Daynard T, Bally MB, Dedhar S (2005) Inhibition of ILK in PTEN-mutant human glioblastomas inhibits PKB/Akt activation, induces apoptosis, and delays tumor growth. Oncogene 24:3596–3605PubMedCrossRefGoogle Scholar
  56. 56.
    Edwards LA, Woo J, Huxham LA, Verreault M, Dragowska WH, Chiu G, Rajput A, Kyle AH, Kalra J, Yapp D, Yan H, Minchinton AI, Huntsman D, Daynard T, Waterhouse DN, Thiessen B, Dedhar S, Bally MB (2008) Suppression of VEGF secretion and changes in glioblastoma multiforme microenvironment by inhibition of integrin-linked kinase (ILK). Mol Cancer Ther 7:59–70PubMedCrossRefGoogle Scholar
  57. 57.
    Guan H, Song L, Cai J, Huang Y, Wu J, Yuan J, Li J, Li M (2011) Sphingosine kinase 1 regulates the Akt/FOXO3a/Bim pathway and contributes to apoptosis resistance in glioma cells. PLoS One 6:e19946PubMedCentralPubMedCrossRefGoogle Scholar
  58. 58.
    Zhou BP, Liao Y, Xia W, Zou Y, Spohn B, Hung MC (2001) HER-2/neu induces p53 ubiquitination via Akt-mediated MDM2 phosphorylation. Nat Cell Biol 3:973–982PubMedCrossRefGoogle Scholar
  59. 59.
    Cardone MH, Roy N, Stennicke HR, Salvesen GS, Franke TF, Stanbridge E, Frisch S, Reed JC (1998) Regulation of cell death protease caspase-9 by phosphorylation. Science 282:1318–1321PubMedCrossRefGoogle Scholar
  60. 60.
    Carra E, Barbieri F, Marubbi D, Pattarozzi A, Favoni RE, Florio T, Daga A (2013) Sorafenib selectively depletes human glioblastoma tumor-initiating cells from primary cultures. Cell Cycle 12:491–500PubMedCentralPubMedCrossRefGoogle Scholar
  61. 61.
    Kao GD, Jiang Z, Fernandes AM, Gupta AK, Maity A (2007) Inhibition of phosphatidylinositol-3-OH kinase/Akt signaling impairs DNA repair in glioblastoma cells following ionizing radiation. J Biol Chem 282:21206–21212PubMedCentralPubMedCrossRefGoogle Scholar
  62. 62.
    Mukherjee B, McEllin B, Camacho CV, Tomimatsu N, Sirasanagandala S, Nannepaga S, Hatanpaa KJ, Mickey B, Madden C, Maher E, Boothman DA, Furnari F, Cavenee WK, Bachoo RM, Burma S (2009) EGFRvIII and DNA double-strand break repair: a molecular mechanism for radioresistance in glioblastoma. Cancer Res 69:4252–4259PubMedCentralPubMedCrossRefGoogle Scholar
  63. 63.
    Kang KB, Zhu C, Wong YL, Gao Q, Ty A, Wong MC (2012) Gefitinib radiosensitizes stem-like glioma cells: inhibition of epidermal growth factor receptor-Akt–DNA–PK signaling, accompanied by inhibition of DNA double-strand break repair. Int J Radiat Oncol Biol Phys 83:e43–e52PubMedCrossRefGoogle Scholar
  64. 64.
    Fraser M, Harding SM, Zhao H, Coackley C, Durocher D, Bristow RG (2011) MRE11 promotes AKT phosphorylation in direct response to DNA double-strand breaks. Cell Cycle 10:2218–2232PubMedCrossRefGoogle Scholar
  65. 65.
    Soeda A, Park M, Lee D, Mintz A, Androutsellis-Theotokis A, McKay RD, Engh J, Iwama T, Kunisada T, Kassam AB, Pollack IF, Park DM (2009) Hypoxia promotes expansion of the CD133-positive glioma stem cells through activation of HIF-1alpha. Oncogene 28:3949–3959PubMedCrossRefGoogle Scholar
  66. 66.
    Gallia GL, Tyler BM, Hann CL, Siu IM, Giranda VL, Vescovi AL, Brem H, Riggins GJ (2009) Inhibition of Akt inhibits growth of glioblastoma and glioblastoma stem-like cells. Mol Cancer Ther 8:386–393PubMedCrossRefGoogle Scholar
  67. 67.
    Ran C, Liu H, Hitoshi Y, Israel MA (2013) Proliferation-independent control of tumor glycolysis by PDGFR-mediated AKT activation. Cancer Res 73:1831–1843PubMedCrossRefGoogle Scholar
  68. 68.
    Ping YF, Yao XH, Jiang JY, Zhao LT, Yu SC, Jiang T, Lin MC, Chen JH, Wang B, Zhang R, Cui YH, Qian C, Wang J, Bian XW (2011) The chemokine CXCL12 and its receptor CXCR4 promote glioma stem cell-mediated VEGF production and tumour angiogenesis via PI3K/AKT signalling. J Pathol 224:344–354PubMedCrossRefGoogle Scholar
  69. 69.
    Wei Y, Jiang Y, Zou F, Liu Y, Wang S, Xu N, Xu W, Cui C, Xing Y, Cao B, Liu C, Wu G, Ao H, Zhang X, Jiang J (2013) Activation of PI3K/Akt pathway by CD133-p85 interaction promotes tumorigenic capacity of glioma stem cells. Proc Natl Acad Sci U S A 110:6829–6834Google Scholar
  70. 70.
    Osuka S, Sampetrean O, Shimizu T, Saga I, Onishi N, Sugihara E, Okubo J, Fujita S, Takano S, Matsumura A, Saya H (2013) IGF1 receptor signaling regulates adaptive radioprotection in glioma stem cells. Stem Cells 31:627–640PubMedCrossRefGoogle Scholar
  71. 71.
    Taha C, Liu Z, Jin J, Al-Hasani H, Sonenberg N, Klip A (1999) Opposite translational control of GLUT1 and GLUT4 glucose transporter mRNAs in response to insulin. Role of mammalian target of rapamycin, protein kinase b, and phosphatidylinositol 3-kinase in GLUT1 mRNA translation. J Biol Chem 274:33085–33091PubMedCrossRefGoogle Scholar
  72. 72.
    Jiang BH, Liu LZ (2008) AKT signaling in regulating angiogenesis. Curr Cancer Drug Targets 8:19–26PubMedCrossRefGoogle Scholar
  73. 73.
    Gordan JD, Simon MC (2007) Hypoxia-inducible factors: central regulators of the tumor phenotype. Curr Opin Genet Dev 17:71–77PubMedCentralPubMedCrossRefGoogle Scholar
  74. 74.
    Liu JP (1999) Studies of the molecular mechanisms in the regulation of telomerase activity. FASEB J 13:2091–2104PubMedGoogle Scholar
  75. 75.
    Das G, Shiras A, Shanmuganandam K, Shastry P (2011) Rictor regulates MMP-9 activity and invasion through Raf-1–MEK–ERK signaling pathway in glioma cells. Mol Carcinog 50:412–423PubMedCrossRefGoogle Scholar
  76. 76.
    Vladimirova V, Waha A, Luckerath K, Pesheva P, Probstmeier R (2008) Runx2 is expressed in human glioma cells and mediates the expression of galectin-3. J Neurosci Res 86:2450–2461PubMedCrossRefGoogle Scholar
  77. 77.
    Zhang H, Pan Y, Zheng L, Choe C, Lindgren B, Jensen ED, Westendorf JJ, Cheng L, Huang H (2011) FOXO1 inhibits Runx2 transcriptional activity and prostate cancer cell migration and invasion. Cancer Res 71:3257–3267PubMedCentralPubMedCrossRefGoogle Scholar
  78. 78.
    Morimoto AM, Tomlinson MG, Nakatani K, Bolen JB, Roth RA, Herbst R (2000) The MMAC1 tumor suppressor phosphatase inhibits phospholipase C and integrin-linked kinase activity. Oncogene 19:200–209PubMedCrossRefGoogle Scholar
  79. 79.
    Endersby R, Zhu X, Hay N, Ellison DW, Baker SJ (2011) Nonredundant functions for Akt isoforms in astrocyte growth and gliomagenesis in an orthotopic transplantation model. Cancer Res 71:4106–4116PubMedCentralPubMedCrossRefGoogle Scholar
  80. 80.
    Knobbe CB, Reifenberger G (2003) Genetic alterations and aberrant expression of genes related to the phosphatidyl-inositol-3′-kinase/protein kinase B (Akt) signal transduction pathway in glioblastomas. Brain Pathol 13:507–518PubMedCrossRefGoogle Scholar
  81. 81.
    Pu P, Kang C, Li J, Jiang H (2004) Antisense and dominant-negative AKT2 cDNA inhibits glioma cell invasion. Tumour Biol 25:172–178PubMedCrossRefGoogle Scholar
  82. 82.
    Pu P, Kang C, Li J, Jiang H, Cheng J (2006) The effects of antisense AKT2 RNA on the inhibition of malignant glioma cell growth in vitro and in vivo. J Neurooncol 76:1–11PubMedCrossRefGoogle Scholar
  83. 83.
    Zhang J, Han L, Zhang A, Wang Y, Yue X, You Y, Pu P, Kang C (2010) AKT2 expression is associated with glioma malignant progression and required for cell survival and invasion. Oncol Rep 24:65–72PubMedGoogle Scholar
  84. 84.
    Zhang B, Gu F, She C, Guo H, Li W, Niu R, Fu L, Zhang N, Ma Y (2009) Reduction of Akt2 inhibits migration and invasion of glioma cells. Int J Cancer 125:585–595PubMedCrossRefGoogle Scholar
  85. 85.
    Cui Y, Wang Q, Wang J, Dong Y, Luo C, Hu G, Lu Y (2012) Knockdown of AKT2 expression by RNA interference inhibits proliferation, enhances apoptosis, and increases chemosensitivity to the anticancer drug VM-26 in U87 glioma cells. Brain Res 1469:1–9PubMedCrossRefGoogle Scholar
  86. 86.
    Fortin SP, Ennis MJ, Savitch BA, Carpentieri D, McDonough WS, Winkles JA, Loftus JC, Kingsley C, Hostetter G, Tran NL (2009) Tumor necrosis factor-like weak inducer of apoptosis stimulation of glioma cell survival is dependent on Akt2 function. Mol Cancer Res 7:1871–1881PubMedCentralPubMedCrossRefGoogle Scholar
  87. 87.
    Wang G, Kang C, Pu P (2010) Increased expression of Akt2 and activity of PI3Kand cell proliferation with the ascending of tumor grade of human gliomas. Clin Neurol Neurosurg 112:324–327PubMedCrossRefGoogle Scholar
  88. 88.
    Cancer Genome Atlas Research Network (2008) Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455:1061–1068CrossRefGoogle Scholar
  89. 89.
    Chakravarti A, Zhai G, Suzuki Y, Sarkesh S, Black PM, Muzikansky A, Loeffler JS (2004) The prognostic significance of phosphatidylinositol 3-kinase pathway activation in human gliomas. J Clin Oncol 22:1926–1933PubMedCrossRefGoogle Scholar
  90. 90.
    Carico C, Nuno M, Mukherjee D, Elramsisy A, Dantis J, Hu J, Rudnick J, Yu JS, Black KL, Bannykh SI, Patil CG (2012) Loss of PTEN is not associated with poor survival in newly diagnosed glioblastoma patients of the temozolomide era. PLoS One 7:e33684PubMedCentralPubMedCrossRefGoogle Scholar
  91. 91.
    Narayan RS, Fedrigo CA, Stalpers LJ, Baumert BG, Sminia P (2013) Targeting the Akt-pathway to improve radiosensitivity in glioblastoma. Curr Pharm Des 19:951–957PubMedCrossRefGoogle Scholar
  92. 92.
    Hirose Y, Katayama M, Mirzoeva OK, Berger MS, Pieper RO (2005) Akt activation suppresses Chk2-mediated, methylating agent-induced G2 arrest and protects from temozolomide-induced mitotic catastrophe and cellular senescence. Cancer Res 65:4861–4869PubMedCrossRefGoogle Scholar
  93. 93.
    Momota H, Nerio E, Holland EC (2005) Perifosine inhibits multiple signaling pathways in glial progenitors and cooperates with temozolomide to arrest cell proliferation in gliomas in vivo. Cancer Res 65:7429–7435PubMedCrossRefGoogle Scholar
  94. 94.
    Prasad G, Sottero T, Yang X, Mueller S, James CD, Weiss WA, Polley MY, Ozawa T, Berger MS, Aftab DT, Prados MD, Haas-Kogan DA (2011) Inhibition of PI3K/mTOR pathways in glioblastoma and implications for combination therapy with temozolomide. Neuro Oncol 13:384–392PubMedCentralPubMedCrossRefGoogle Scholar
  95. 95.
    Chen JS, Zhou LJ, Entin-Meer M, Yang X, Donker M, Knight ZA, Weiss W, Shokat KM, Haas-Kogan D, Stokoe D (2008) Characterization of structurally distinct, isoform-selective phosphoinositide 3′-kinase inhibitors in combination with radiation in the treatment of glioblastoma. Mol Cancer Ther 7:841–850PubMedCrossRefGoogle Scholar
  96. 96.
    Chautard E, Loubeau G, Tchirkov A, Chassagne J, Vermot-Desroches C, Morel L, Verrelle P (2010) Akt signaling pathway: a target for radiosensitizing human malignant glioma. Neuro Oncol 12:434–443PubMedCentralPubMedGoogle Scholar
  97. 97.
    Becher OJ, Hambardzumyan D, Walker TR, Helmy K, Nazarian J, Albrecht S, Hiner RL, Gall S, Huse JT, Jabado N, MacDonald TJ, Holland EC (2010) Preclinical evaluation of radiation and perifosine in a genetically and histologically accurate model of brainstem glioma. Cancer Res 70:2548–2557PubMedCrossRefGoogle Scholar
  98. 98.
    Galanis E, Buckner JC, Maurer MJ, Kreisberg JI, Ballman K, Boni J, Peralba JM, Jenkins RB, Dakhil SR, Morton RF, Jaeckle KA, Scheithauer BW, Dancey J, Hidalgo M, Walsh DJ (2005) Phase II trial of temsirolimus (CCI-779) in recurrent glioblastoma multiforme: a North Central Cancer Treatment Group Study. J Clin Oncol 23:5294–5304PubMedCrossRefGoogle Scholar
  99. 99.
    Chang SM, Wen P, Cloughesy T, Greenberg H, Schiff D, Conrad C, Fink K, Robins HI, De Angelis L, Raizer J, Hess K, Aldape K, Lamborn KR, Kuhn J, Dancey J, Prados MD (2005) Phase II study of CCI-779 in patients with recurrent glioblastoma multiforme. Invest New Drugs 23:357–361PubMedCrossRefGoogle Scholar
  100. 100.
    Butowski N, Chang SM, Lamborn KR, Polley MY, Parvataneni R, Hristova-Kazmierski M, Musib L, Nicol SJ, Thornton DE, Prados MD (2010) Enzastaurin plus temozolomide with radiation therapy in glioblastoma multiforme: a phase I study. Neuro Oncol 12:608–613PubMedCentralPubMedCrossRefGoogle Scholar
  101. 101.
    Sarkaria JN, Galanis E, Wu W, Peller PJ, Giannini C, Brown PD, Uhm JH, McGraw S, Jaeckle KA, Buckner JC (2011) North Central Cancer Treatment Group Phase I trial N057K of everolimus (RAD001) and temozolomide in combination with radiation therapy in patients with newly diagnosed glioblastoma multiforme. Int J Radiat Oncol Biol Phys 81:468–475PubMedCentralPubMedCrossRefGoogle Scholar
  102. 102.
    Lassen U, Sorensen M, Gaziel TB, Hasselbalch B, Poulsen HS (2013) Phase II study of bevacizumab and temsirolimus combination therapy for recurrent glioblastoma multiforme. Anticancer Res 33:1657–1660PubMedGoogle Scholar
  103. 103.
    Chinnaiyan P, Won M, Wen PY, Rojiani AM, Wendland M, Dipetrillo TA, Corn BW, Mehta MP (2013) RTOG 0913: a phase 1 study of daily everolimus (RAD001) in combination with radiation therapy and temozolomide in patients with newly diagnosed glioblastoma. Int J Radiat Oncol Biol Phys 86:880–884PubMedCrossRefGoogle Scholar
  104. 104.
    Dowling RJ, Pollak M, Sonenberg N (2009) Current status and challenges associated with targeting mTOR for cancer therapy. BioDrugs 23:77–91PubMedCrossRefGoogle Scholar
  105. 105.
    O’Reilly KE, Rojo F, She QB, Solit D, Mills GB, Smith D, Lane H, Hofmann F, Hicklin DJ, Ludwig DL, Baselga J, Rosen N (2006) mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. Cancer Res 66:1500–1508PubMedCentralPubMedCrossRefGoogle Scholar
  106. 106.
    Thoreen CC, Kang SA, Chang JW, Liu Q, Zhang J, Gao Y, Reichling LJ, Sim T, Sabatini DM, Gray NS (2009) An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1. J Biol Chem 284:8023–8032PubMedCentralPubMedCrossRefGoogle Scholar
  107. 107.
    O’Reilly T, McSheehy PM (2010) Biomarker development for the clinical activity of the mTOR inhibitor everolimus (RAD001): processes, limitations, and further proposals. Transl Oncol 3:65–79PubMedCentralPubMedCrossRefGoogle Scholar
  108. 108.
    Pal SK, Reckamp K, Yu H, Figlin RA (2010) Akt inhibitors in clinical development for the treatment of cancer. Exp Opin Invest Drugs 19:1355–1366CrossRefGoogle Scholar
  109. 109.
    Cheng Y, Zhang Y, Zhang L, Ren X, Huber-Keener KJ, Liu X, Zhou L, Liao J, Keihack H, Yan L, Rubin E, Yang JM (2012) MK-2206, a novel allosteric inhibitor of Akt, synergizes with gefitinib against malignant glioma via modulating both autophagy and apoptosis. Mol Cancer Ther 11:154–164PubMedCentralPubMedCrossRefGoogle Scholar
  110. 110.
    Makhov PB, Golovine K, Kutikov A, Teper E, Canter DJ, Simhan J, Uzzo RG, Kolenko VM (2012) Modulation of Akt/mTOR signaling overcomes sunitinib resistance in renal and prostate cancer cells. Mol Cancer Ther 11:1510–1517PubMedCentralPubMedCrossRefGoogle Scholar
  111. 111.
    Lin J, Sampath D, Nannini MA, Lee BB, Degtyarev M, Oeh J, Savage H, Guan Z, Hong R, Kassees R, Lee LB, Risom T, Gross S, Liederer BM, Koeppen H, Skelton NJ, Wallin JJ, Belvin M, Punnoose E, Friedman LS, Lin K (2013) Targeting activated Akt with GDC-0068, a novel selective Akt inhibitor that is efficacious in multiple tumor models. Clin Cancer Res 19:1760–1772PubMedCrossRefGoogle Scholar
  112. 112.
    LoPiccolo J, Granville CA, Gills JJ, Dennis PA (2007) Targeting Akt in cancer therapy. Anticancer Drugs 18:861–874PubMedGoogle Scholar
  113. 113.
    Wyszomierski SL, Yu D (2005) A knotty turnabout? Akt1 as a metastasis suppressor. Cancer Cell 8:437–439PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Emmanuel Chautard
    • 1
    • 2
    Email author
  • Zangbéwendé Guy Ouédraogo
    • 1
    • 2
    • 3
  • Julian Biau
    • 1
    • 2
    • 4
  • Pierre Verrelle
    • 1
    • 2
  1. 1.Clermont Université, Université d’AuvergneClermont-FerrandFrance
  2. 2.Centre Jean Perrin, Laboratoire de Radio-Oncologie ExpérimentaleClermont-FerrandFrance
  3. 3.Laboratoire de Pharmacologie, de Toxicologie et de Chimie ThérapeutiqueUniversité de OuagadougouOuagadougouBurkina Faso
  4. 4.Institut CurieCNRS UMR3347, INSERM U2021OrsayFrance

Personalised recommendations