Journal of Neuro-Oncology

, Volume 117, Issue 1, pp 175–182

Diffusion-weighted MRI derived apparent diffusion coefficient identifies prognostically distinct subgroups of pediatric diffuse intrinsic pontine glioma

  • Robert M. Lober
  • Yoon-Jae Cho
  • Yujie Tang
  • Patrick D. Barnes
  • Michael S. Edwards
  • Hannes Vogel
  • Paul G. Fisher
  • Michelle Monje
  • Kristen W. Yeom
Clinical Study

Abstract

While pediatric diffuse intrinsic pontine gliomas (DIPG) remain fatal, recent data have shown subgroups with distinct molecular biology and clinical behavior. We hypothesized that diffusion-weighted MRI can be used as a prognostic marker to stratify DIPG subsets with distinct clinical behavior. Apparent diffusion coefficient (ADC) values derived from diffusion-weighted MRI were computed in 20 consecutive children with treatment-naïve DIPG tumors. The median ADC for the cohort was used to stratify the tumors into low and high ADC groups. Survival, gender, therapy, and potential steroid effects were compared between the ADC groups. Median age at diagnosis was 6.6 (range 2.3–13.2) years, with median follow-up seven (range 1–36) months. There were 14 boys and six girls. Seventeen patients received radiotherapy, five received chemotherapy, and six underwent cerebrospinal fluid diversion. The median ADC of 1,295 × 10−6 mm2/s for the cohort partitioned tumors into low or high diffusion groups, which had distinct median survivals of 3 and 13 months, respectively (log-rank p < 0.001). Low ADC tumors were found only in boys, whereas high ADC tumors were found in both boys and girls. Available tissue specimens in three low ADC tumors demonstrated high-grade histology, whereas one high ADC tumor demonstrated low-grade histology with a histone H3.1 K27M mutation and high-grade metastatic lesion at autopsy. ADC derived from diffusion-weighted MRI may identify prognostically distinct subgroups of pediatric DIPG.

Keywords

Diffuse intrinsic pontine glioma (DIPG) Diffusion Diffusion-weighted imaging (DWI) Apparent diffusion coefficient (ADC) MRI 

References

  1. 1.
    Dolecek TA, Propp JM, Stroup NE, Kruchko C (2012) CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2005–2009. Neuro Oncol 14(suppl 5):v1–v49PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Hargrave D, Bartels U, Bouffet E (2006) Diffuse brainstem glioma in children: critical review of clinical trials. Lancet Oncol 7:241–248PubMedCrossRefGoogle Scholar
  3. 3.
    Donaldson SS, Laningham F, Fisher PG (2006) Advances toward an understanding of brainstem gliomas. J Clin Oncol 24:1266–1272PubMedCrossRefGoogle Scholar
  4. 4.
    Barkovich, Krischer J, Kun LE et al. (1990–1991) Brainstem gliomas: a classification system based on magnetic resonance imaging. Pediatr Neurosurg 16(2): 73–83Google Scholar
  5. 5.
    Fischbein NJ, Prados MD, Wara W, Russo C, Edwards MSB, Barkovich AJ (1996) Radiologic classification of brainstem tumors: correlation of magnetic resonance imaging appearance with clinical outcome. Pediatr Neurosurg 24:9–23PubMedCrossRefGoogle Scholar
  6. 6.
    Hargrave D, Chuang N, Bouffet E (2008) Conventional MRI cannot predict survival in childhood diffuse intrinsic pontine glioma. J Neurooncol 86:313–319PubMedCrossRefGoogle Scholar
  7. 7.
    Liu AK, Brandon J, Foreman NK et al (2009) Conventional MRI at presentation does not predict clinical response to radiation therapy in children with diffuse pontine glioma. Pediatr Radiol 39:1317–1320PubMedCrossRefGoogle Scholar
  8. 8.
    Poussaint TY, Kocak M, Vajapeyam S et al (2011) MRI as a central component of clinical trials analysis in brainstem glioma: a report from the Pediatric Brain Tumor Consortium (PBTC). Neuro Oncol 13(4):417–427PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Puget S, Philippe C, Bax DA et al (2012) Mesenchmyal transition and PDGFRA amplification/mutation are key distinct oncogenic events in pediatric diffuse intrinsic pontine gliomas. PLoS One 7(2):e30313PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Schwartzentruber J, Korshunov A, Liu XY et al (2012) Driver mutations in histone H3.3 and chromatin remodeling genes in pediatric glioblastoma. Nature 482(7384):226–231PubMedCrossRefGoogle Scholar
  11. 11.
    Sturm D, Witt H, Hovestadt V et al (2012) Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cancer Cell 22(4):425–437PubMedCrossRefGoogle Scholar
  12. 12.
    Tien RD, Felsberg GJ, Friedman H et al (1994) MR imaging of high-grade cerebral gliomas: value of diffusion-weighted echoplanar pulse sequences. Am J Radiol 162:671–677Google Scholar
  13. 13.
    Brunberg JA, Chenevert TL, McKeever PE et al (1995) In vivo MR determination of water diffusion coefficients and diffusion anisotropy: correlation with structural alteration in gliomas of the cerebral hemispheres. AJNR 16:361–371PubMedGoogle Scholar
  14. 14.
    Krabbe K, Gideon P, Wagn P et al (1997) MR diffusion imaging of human intracranial tumors. Neuroradiol 39:483–489CrossRefGoogle Scholar
  15. 15.
    Sugahara T, Korogi Y, Kochi M et al (1999) Usefulness of diffusion-weighted MRI with echo-planar technique in the evaluation of cellularity in gliomas. J Magn Reson Imaging 9:53–60PubMedCrossRefGoogle Scholar
  16. 16.
    Gauvain KM, McKinstry RC, Mukherjee RC et al (2001) Evaluating pediatric brain tumor cellularity with diffusion-tensor imaging. Am J Radiol 177:449–454Google Scholar
  17. 17.
    Rumboldt Z, Camacho DL, Lake D et al (2006) Apparent diffusion coefficients for differentiation of cerebellar tumors in children. AJNR 27(6):1362–1369PubMedGoogle Scholar
  18. 18.
    Guo AC, Cummings TJ, Dash RC et al (2002) Lymphomas and high-grade astrocytomas: comparison of water diffusibility and histologic characteristics. Radiology 224:177–183PubMedCrossRefGoogle Scholar
  19. 19.
    Barajas RF Jr, Rubenstein JL, Chang JS et al (2010) Diffusion-weighted MR imaging derived apparent diffusion coefficient is predictive of clinical outcome in primary central nervous system lymphoma. AJNR 31(1):60–66PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Yeom KW, Lober RM, Mobley BC et al (2013) Diffusion-weighed MRI: distinction of skull base chordoma from chondrosarcoma. AJNR 34(5):1056–1061PubMedCrossRefGoogle Scholar
  21. 21.
    Chenevert TL, McKeever PE, Ross BD (1997) Monitoring early response of experimental brain tumors to therapy using diffusion magnetic resonance imaging. Clin Cancer Res 3:1457–1466PubMedGoogle Scholar
  22. 22.
    Yeom KW, Lober RM, Andre JB, Fisher PG, Barnes PD, Edwards MS, Partap S (2013) Prognostic role for diffusion-weighted imaging of pediatric optic pathway glioma. J Neurooncol 113(3):479–483PubMedCrossRefGoogle Scholar
  23. 23.
    Chen HJ, Panigrahy A, Dhall G et al (2010) Apparent diffusion and fractional anisotropy of diffuse intrinsic brain stem gliomas. AJNR 31(10):1879–1885PubMedCrossRefGoogle Scholar
  24. 24.
    Wu G, Broniscer A, McEachron TA et al (2012) Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas. Nat Genet 4(3):251–253CrossRefGoogle Scholar
  25. 25.
    Jansen MH, van Vurrden DG, Vandertop WP et al (2012) Diffuse intrinsic pontine gliomas: a systematic update on clinical trials and biology. Cancer Treat Rev 38(1):27–35PubMedCrossRefGoogle Scholar
  26. 26.
    Khuong-Quang DA, Buczkowicz P, Rakapoulos P et al (2012) K27 mutation in hisone H3.3 defines clinically and biologically distinct subgroups of pediatric diffuse intrinsic pontine gliomas. Acta Neuropathol 124(3):439–447PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Hipp SJ, Steffen-Smith E, Hammoud D et al (2011) Predicting outcome of children with diffuse intrinsic pontine gliomas using multiparametric imaging. Neuro Oncol 13(8):904–909PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Steffen-Smith EA, Shih JH, Hipp SJ et al (2011) Proton magnetic resonance spectroscopy predicts survival in children with diffuse intrinsic pontine glioma. J Neurooncol 105(2):365–373PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Le Bihan D, Breton E, Lallemand D et al (1986) MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology 161:401–407PubMedGoogle Scholar
  30. 30.
    Hajnal JV, Doran M, Hall AS et al (1991) MR imaging of anisotropically restricted diffusion of water in the nervous system: technical anatomic and pathologic considerations. J Comput Assit Tomogr 15:1–18CrossRefGoogle Scholar
  31. 31.
    Jost SC, Ackerman JW, Garbow JR et al (2008) Diffusion-weighted and dynamic contrast-enhanced imaging as markers of clinical behavior in children with optic pathway glioma. Pediatr Radiol 38:1293–1299PubMedCrossRefGoogle Scholar
  32. 32.
    Lobel U, Sedlacik J, Reddick WE et al (2011) Quantitative diffusion-weighted and dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging analysis of T2 hypointense lesion components in pediatric diffuse intrinsic pontine glioma. AJNR 32:315–322PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Robert M. Lober
    • 1
  • Yoon-Jae Cho
    • 2
  • Yujie Tang
    • 2
  • Patrick D. Barnes
    • 3
  • Michael S. Edwards
    • 1
  • Hannes Vogel
    • 4
  • Paul G. Fisher
    • 2
  • Michelle Monje
    • 5
  • Kristen W. Yeom
    • 3
  1. 1.Department of Neurosurgery, Lucile Packard Children’s HospitalStanford UniversityPalo AltoUSA
  2. 2.Department of Neurology, Lucile Packard Children’s HospitalStanford UniversityPalo AltoUSA
  3. 3.Department of Radiology, Lucile Packard Children’s HospitalStanford UniversityPalo AltoUSA
  4. 4.Department of Pathology, Lucile Packard Children’s HospitalStanford UniversityPalo AltoUSA
  5. 5.Department of Neurology, Lucile Packard Children’s HospitalStanford UniversityStanfordUSA

Personalised recommendations