Journal of Neuro-Oncology

, Volume 116, Issue 3, pp 437–446

A systematic review of inhaled intranasal therapy for central nervous system neoplasms: an emerging therapeutic option

  • Asa Peterson
  • Amy Bansal
  • Florence Hofman
  • Thomas C. Chen
  • Gabriel Zada
Topic Review

Abstract

The intranasal route for drug delivery is rapidly evolving as a viable means for treating selected central nervous system (CNS) conditions. We aimed to identify studies pertaining to the application of intranasal drug administration for the treatment of primary CNS tumors. A systematic literature review was conducted to identify all studies published in the English language pertaining to intranasal therapy for CNS neoplasms, and/or general mechanisms and pharmacokinetics regarding targeted intranasal CNS drug delivery. A total of 194 abstracts were identified and screened. Thirty-seven studies met inclusion criteria. Of these, 21 focused on intranasal treatment of specific primary CNS tumors, including gliomas (11), meningiomas (1), and pituitary adenomas (4). An additional 16 studies focused on general mechanisms of intranasal therapy and drug delivery to the CNS using copolymer micelles, viral vectors, and nanoparticles. Inhaled compounds/substances investigated included perillyl alcohol, vesicular stomatitis virus, parvovirus, telomerase inhibitors, neural stem and progenitor cells, antimetabolites, somatostatin analogues, and dopamine agonists. Radiolabeling, CSF concentration measurement, imaging studies, and histological examination were utilized to clarify the mechanism and distribution by which drugs were delivered to the CNS. Successful drug delivery and tumor/symptom response was reported in all 21 tumor-specific studies. The intranasal route holds tremendous potential as a viable option for drug delivery for CNS neoplasms. A variety of antitumoral agents may be delivered via this route, thereby potentially offering a more direct delivery approach and ameliorating the adverse effects associated with systemic drug delivery.

Keywords

CNS tumor Neoplasm Inhalant Intranasal Chemotherapy Pharmacokinetics 

References

  1. 1.
    Lochhead JJ, Thorne RG (2011) Intranasal delivery of biologics to the central nervous system. Adv Drug Deliv Rev 64(7):614–628. doi:10.1016/j.addr.2011.11.002 PubMedCrossRefGoogle Scholar
  2. 2.
    Behl CR, Pimplaskar HK, Sileno AP et al (1998) Effects of physicochemical properties and other factors on systemic nasal drug delivery. Adv Drug Deliv Rev 29:89–116PubMedCrossRefGoogle Scholar
  3. 3.
    Illum L (2003) Nasal drug delivery—possibilities, problems and solutions. J Controll Release 87(1–3):187–198CrossRefGoogle Scholar
  4. 4.
    Illum L (2004) Is nose-to-brain transport of drugs in man a reality? J Pharm Pharmacol 56:3–17PubMedCrossRefGoogle Scholar
  5. 5.
    Talegaonkar S, Mishra PR (2004) Intranasal delivery: an approach to bypass the blood brain barrier. Indian J Pharmacol 36(3):140–147Google Scholar
  6. 6.
    Mistry A, Stolnik S, Illum L (2009) Nanoparticles for direct nose-to-brain delivery of drugs. Int J Pharm 379:146–157PubMedCrossRefGoogle Scholar
  7. 7.
    Thorne RG, Emory CR, Ala TA, Frey QH (1995) Quantitative analysis of the olfactory pathway for drug delivery to brain. Brain Res 692:278–283PubMedCrossRefGoogle Scholar
  8. 8.
    Dhuria S, Hanson L, Frey W (2009) Intranasal delivery to the central nervous system: mechanisms and experimental considerations. J Pharm Sci 99(4):1654–1673Google Scholar
  9. 9.
    Frey WH, Liu J, Chen X et al (1997) Delivery of 125I-NGF to the brain via the olfactory route. Drug Deliv 4:87–92CrossRefGoogle Scholar
  10. 10.
    Thorne RG, Pronk GJ, Padmanabhan V, Frey WH (2004) Delivery of insulin-like growth factor-1 to the rat brain and spinal cord along olfactory and trigeminal pathways following intranasal administration. Neuroscience 127:481–496PubMedCrossRefGoogle Scholar
  11. 11.
    Fliedner S, Schulz C, Lehnert H (2006) Brain uptake of intranasally applied radioiodinated leptin in wistar rats. Endocrinology 147:2088–2094PubMedCrossRefGoogle Scholar
  12. 12.
    Born J, Lange T, Kern W, McGregor GP, Bickel U, Fehm HL (2002) Sniffing neuropeptides: a transnasal approach to the human brain. Nat Neurosci 5(6):514–516PubMedCrossRefGoogle Scholar
  13. 13.
    Fehm HL, Perras B, Smolnik R, Kern W, Born J (2000) Manipulating neuropeptidergic pathways in humans: a novel approach to neuropharmacology? Eur J Pharm 405:43–54CrossRefGoogle Scholar
  14. 14.
    Lundstrom K (2001) Alphavirus vectors for gene therapy applications. Curr Gene Ther 1:19–29PubMedCrossRefGoogle Scholar
  15. 15.
    Reitz M, Demestre M, Sedlacik J, Meissner H, Fiehler J, Kim SU, Westphal M, Schmidt NO (2012) Intranasal delivery of neural stem/progenitor cells: a noninvasive passage to target intracerebral glioma. Stem Cells Trans Med 1(12):866–873CrossRefGoogle Scholar
  16. 16.
    Liu L, Eckert MA, Riazifar H, Kang D-K, Agalliu D, Zhao W (2013) From blood to the brain: can systemically transplanted mesenchymal stem cells cross the blood-brain barrier?. Stem Cells Int 2013:435093. doi:10.1155/2013/435093 PubMedPubMedCentralGoogle Scholar
  17. 17.
    Chen J, Zhang C, Liu Q (2012) Solanum tuberosum lectin-conjugated plga nanoparticles for nose-to-brain delivery. In vivo and in vitro evaluations. J Drug Target 20(2):174–184PubMedCrossRefGoogle Scholar
  18. 18.
    Jansson D, Bjork E (2002) Visualization of in vivo olfactory uptake and transfer using fluorescein dextran. J Drug Target 10:379–386PubMedCrossRefGoogle Scholar
  19. 19.
    Kanazawa T, Tanaka K, TaKi H (2011) Cell-penetrating peptide-modified block copolymer micelles promote direct brain delivery via intranasal administration. Pharm Res 28(9):2130–2139PubMedCrossRefGoogle Scholar
  20. 20.
    da Fonseca CO, Landeiro JA, Clark SS, Quirico-Santos T et al (2006) Recent advances in the molecular genetics of malignant gliomas disclose targets for antitumor agent perillyl alcohol. Surg Neurol 65(Suppl 1):2CrossRefGoogle Scholar
  21. 21.
    Balassiano TI, de Paulo AS, Silva HN, Cabral CM, Gibaldi D, Bozza M, da Fonseca OC, da Costa Carvalho DGM (2002) Effects of perillyl alcohol in glial C6 cell line in vitro and anti-metastatic activity in chorioallantoic membrane model. Int J Mol Med 10:785–788Google Scholar
  22. 22.
    Bailey HH, Attia S, Love RR et al (2007) Phase II trial of daily oral perillyl alcohol (NSC 641066) in treatment-refractory metastatic breast cancer. Cancer Chemother Pharmacol 62:149–157PubMedCrossRefGoogle Scholar
  23. 23.
    da Fonseca CO, Linden R, Futuro D, Gattass CR, Quirico-Santos T (2008) Ras pathway activation in gliomas: a strategic target for intranasal administration of perillyl alcohol. Arch Immunol Ther Exp (Warsz) 56(4):267–276CrossRefGoogle Scholar
  24. 24.
    da Fonseca CO, Masini M, Futuro D, Caetano R, Gattass CR, Quirico-Santos T (2006) Anaplastic oligodendroglioma responding favorably to intranasal delivery of perillyl alcohol: a case report and literature review. Surg Neurol 66:611–615PubMedCrossRefGoogle Scholar
  25. 25.
    da Fonseca CO, Silva JT, Lins IR, Simão M, Arnobio A, Futuro D, Quirico-Santos T (2009) Correlation of tumor topography and peritumoral edema of recurrent malignant gliomas with therapeutic response to intranasal administration of perillyl alcohol. Invest New Drugs 27(6):557–564PubMedCrossRefGoogle Scholar
  26. 26.
    da Fonseca CO, Schwartsmann G, Fischer J, Nagel J, Futuro D, Quirico-Santos T, RochaGattass C (2008) Preliminary results from a phase I/II study of perillyl alcohol intranasal administration in adults with recurrent malignant gliomas. Surg Neurol 70:259–267PubMedCrossRefGoogle Scholar
  27. 27.
    da Fonseca CO, Simao M, Lins IR, Caetano RO, Futuro D, Quirico-Santos T (2010) Efficacy of monoterpene perillyl alcohol upon survival rate of patients with recurrent glioblastoma. J Cancer Res Clin Oncol 137:287–293PubMedCrossRefGoogle Scholar
  28. 28.
    Cho HY, Wang W, Jhaveri N, Torres S, Tseng J, Leong MN, Lee DJ, Goldkorn G, Xu T, Petasis NA, Louie SG, Schonthal AH, Hofman FM, Chen TC (2012) Perillyl alcohol for the treatment of temozolomide-resistant gliomas. Mol Cancer Ther 11(11):2462–2472PubMedCrossRefGoogle Scholar
  29. 29.
    Balachandran S, Barber GN (2004) Defective translational control facilitates vesicular stomatitis virus oncolysis. Cancer Cell 5:51–65PubMedCrossRefGoogle Scholar
  30. 30.
    Wollmann G, Rogulin V, Simon I, Rose JK, van den Pol AN (2010) Some attenuated variants of vesicular stomatitis virus show enhanced oncolytic activity against human glioblastoma cells relative to normal brain cells. J Virol 84(3):1563–1573PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Ozduman K, Wollmann G, Piepmeier JM, van den Pol AN (2008) Systemic vesicular stomatitis virus selectively destroys multifocal glioma and metastatic carcinoma in brain. J Neurosci 28(8):1882–1893PubMedCrossRefGoogle Scholar
  32. 32.
    Rommelaere J, Geletneky K, Angelova AL, Daeffler L, Dinsart C, Kiprianova I et al (2010) Oncolytic parvoviruses as cancer therapeutics. Cytokine Growth Factor Rev 21:185–196PubMedCrossRefGoogle Scholar
  33. 33.
    Cotmore ST, Tattersall P (2007) Parvoviral host range and cell entry mechanisms. Adv Virus Res 70:189–232Google Scholar
  34. 34.
    Kiprianova I, Thomas N, Ayache A et al (2011) Regression of glioma in rat models by intranasal application of parvovirus. Clin Cancer Res 17:5333–5342PubMedCrossRefGoogle Scholar
  35. 35.
    Le S, Zhu JJ, Anthony DC, Greider CW, Black P (1998) Telomerase activity in human gliomas. Neurosurgery 42(5):1120–1124PubMedCrossRefGoogle Scholar
  36. 36.
    Hashizume R, Ozawa T, Gryaznov SM, Bollen AW, Lamborn KR, Frey WH, Deen DF (2008) New therapeutic approach for brain tumors: intranasal delivery of telomerase inhibitor GRN163. Neuro Oncol 10(2):112–120PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Sakane T, Yamashita S, Yata N, Sezaki H (1999) Transnasal delivery of 5-fluorouracil to the brain in the rat. J Drug Target 7:233–240PubMedCrossRefGoogle Scholar
  38. 38.
    Shingaki T, Sakane T, Yamashita S, Sezaki H, Yoshiharu T, Shoubu S (1999) Transnasal delivery of anticancer drugs to the brain tumor: a new strategy for brain tumor chemotherapy. Drug Deliv System 14:365–371CrossRefGoogle Scholar
  39. 39.
    Shingaki T, Inoue D, Furubayashi T, Sakane T, Katsumi H, Yamamoto A, Yamashita S (2010) Transnasal delivery of methotrexate to brain tumors in rats: a new strategy for brain tumor chemotherapy. Mol Pharm 7(6):1561–1568PubMedCrossRefGoogle Scholar
  40. 40.
    Wang F, Jiang X, Lu W (2003) Profiles of methotrexate in blood and CSF following intranasal and intravenous administration to rats. Int J Pharm 263:1–7PubMedCrossRefGoogle Scholar
  41. 41.
    Wang D, Gao Y, Yun L (2006) Study on brain targeting of raltitrexed following intransal administration in rats. Cancer Chemother Pharmacol 57:97–104PubMedCrossRefGoogle Scholar
  42. 42.
    van Seters AP, van Dulken H, de Keizer RJ, Vielvoye GJ (1989) Symptomatic relief of meningioma by buserelin maintenance therapy. The Lancet 11:564–565CrossRefGoogle Scholar
  43. 43.
    Weeke J, Christensen SE, Orskov H, Kaal A, Pedersen MM, Illum P, Harris AG (1992) A randomized comparison of intranasal and injectable octreotide administration in patients with acromegaly. J Clin Endocrinol Metab 75(1):163–169PubMedGoogle Scholar
  44. 44.
    Invitti C, Fatti L, Camboni MG, Porcu L, Danesi L, Delitala G, Cavagnini F (1996) Effect of chronic treatment with octreotide nasal powder on serum levels of growth hormone, insulin-like growth factor I, insulin-like growth factor binding proteins 1 and 3 in acromegalic patients. J Endocrinol Invest 19(8):548–555PubMedGoogle Scholar
  45. 45.
    Lerner E, Zanten E, Stewart G (2004) Enhanced delivery of octreotide to the brain via transnasal iontophoretic administration. J Drug Target 12(5):273–280PubMedCrossRefGoogle Scholar
  46. 46.
    Sharma G, Mishra AK, Mishra P, Misra A (2009) Intranasal Cabergoline: pharmacokinetics and pharmacodynamic studies. AAPS Pharmscitech 10(4):1321–1330PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Loh JA, Verbalis JG (2008) Disorders of water and salt metabolism associated with pituitary disease. Endocrinol Metab Clin North Am 37:213–234PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Asa Peterson
    • 1
  • Amy Bansal
    • 1
  • Florence Hofman
    • 1
  • Thomas C. Chen
    • 1
  • Gabriel Zada
    • 1
  1. 1.Department of Neurosurgery, Keck School of MedicineLos Angeles County-USC Medical CenterLos AngelesUSA

Personalised recommendations