Advertisement

Journal of Neuro-Oncology

, Volume 115, Issue 3, pp 323–331 | Cite as

Mitogenic signalling in the absence of epidermal growth factor receptor activation in a human glioblastoma cell line

  • Meng Wang
  • Patrick Maier
  • Frederik Wenz
  • Frank Anton Giordano
  • Carsten Herskind
Laboratory Investigation

Abstract

Epidermal growth factor receptor (EGFR) gene amplification and overexpression are commonly present in glioblastoma, and confer advantages of growth, invasiveness and radio/chemotherapy-resistance for tumour cells. Here, we assessed the role of EGFR activation for downstream mitogenic signalling in the commonly used glioblastoma cell line U251. Despite the high expression level, activation of EGFR under standard culture conditions was low. Intact EGFR function was verified by the rapid phosphorylation of EGFR and downstream mitogen-activated protein (MAP) kinase ERK1/2 upon addition of exogenous EGF to serum-starved cells. By contrast, addition of fetal bovine serum (FBS) activated downstream ERK1/2 via the MAP kinase kinase without phosphorylating EGFR. A phospho-receptor tyrosine kinase array showed FBS-induced activation of insulin-like growth factor-1 receptor (IGF-1R), and the IGF-1R inhibitor AG1024 inhibited FBS-induced phosphorylation of ERK1/2, implying IGF-1R as the major driver of FBS-associated mitogenic signalling in the absence of exogenous EGF. These findings have important implications for in vitro drug testing in glioblastoma. Moreover, activation of ERK1/2 was also strongly influenced by growth state and cell density of U251 cultures. Re-seeding exponentially growing cultures at high cell density induced p27/CDKN1B expression and suppressed P-ERK1/2 indicating a certain regulation of proliferation by contact inhibition. Strikingly, highly activated ERK1/2 signalling and cell-cycle progression occurred when cells were released from plateau phase regardless of high seeding density. This phenomenon might implicate a proliferation response in the early recurrence observed after clinical therapy in glioblastoma patients. However, whether it will recapitulate in vivo remains to be demonstrated.

Keywords

Glioblastoma EGFR IGF-1R ERK MAP kinase signalling 

Notes

Acknowledgments

We thank Anne-Kathrin Kirchner and Nicole Guerth for excellent technical assistance. Roche Diagnostics GmbH, Penzberg, Germany is kindly acknowledged for providing erlotinib. P.M. was supported by a grant from the Deutsche Krebshilfe/Dr. Mildred Scheel Stiftung (10-2089-FI 1).

Supplementary material

11060_2013_1232_MOESM1_ESM.ppt (161 kb)
Supplementary material 1 (PPT 161 kb)

References

  1. 1.
    TCGA (2008) Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455:1061–1068. doi: 10.1038/nature07385 CrossRefGoogle Scholar
  2. 2.
    Ohgaki H, Kleihues P (2007) Genetic pathways to primary and secondary glioblastoma. Am J Pathol 170:1445–1453. doi: 10.2353/ajpath.2007.070011 PubMedCrossRefGoogle Scholar
  3. 3.
    Dent P, Yacoub A, Contessa J, Caron R, Amorino G, Valerie K, Hagan MP, Grant S, Schmidt-Ullrich R (2003) Stress and radiation-induced activation of multiple intracellular signaling pathways. Radiat Res 159:283–300PubMedCrossRefGoogle Scholar
  4. 4.
    Rao RD, James CD (2004) Altered molecular pathways in gliomas: an overview of clinically relevant issues. Semin Oncol 31:595–604. doi: S0093775404003240 PubMedCrossRefGoogle Scholar
  5. 5.
    Hynes NE, Horsch K, Olayioye MA, Badache A (2001) The ErbB receptor tyrosine family as signal integrators. Endocr Relat Cancer 8:151–159PubMedCrossRefGoogle Scholar
  6. 6.
    Kolch W, Calder M, Gilbert D (2005) When kinases meet mathematics: the systems biology of MAPK signalling. FEBS Lett 579:1891–1895. doi: 10.1016/j.febslet.2005.02.002 PubMedCrossRefGoogle Scholar
  7. 7.
    Meloche S, Pouyssegur J (2007) The ERK1/2 mitogen-activated protein kinase pathway as a master regulator of the G1- to S-phase transition. Oncogene 26:3227–3239. doi: 10.1038/sj.onc.1210414 PubMedCrossRefGoogle Scholar
  8. 8.
    Plas DR, Thompson CB (2005) Akt-dependent transformation: there is more to growth than just surviving. Oncogene 24:7435–7442. doi: 10.1038/sj.onc.1209097 PubMedCrossRefGoogle Scholar
  9. 9.
    Toker A (2008) Akt signaling: a damaging interaction makes good. Trends Biochem Sci 33:356–359. doi: 10.1016/j.tibs.2008.05.003 PubMedCrossRefGoogle Scholar
  10. 10.
    Mehta VK (2012) Radiotherapy and erlotinib combined: review of the preclinical and clinical evidence. Front Oncol 2:31. doi: 10.3389/fonc.2012.00031 PubMedCrossRefGoogle Scholar
  11. 11.
    Meyn RE, Munshi A, Haymach JV, Milas L, Ang KK (2009) Receptor signaling as a regulatory mechanism of DNA repair. Radiother Oncol 92:316–322. doi: 10.1016/j.radonc.2009.06.031 PubMedCrossRefGoogle Scholar
  12. 12.
    Nakamura JL (2007) The epidermal growth factor receptor in malignant gliomas: pathogenesis and therapeutic implications. Expert Opin Ther Targets 11:463–472. doi: 10.1517/14728222.11.4.463 PubMedCrossRefGoogle Scholar
  13. 13.
    Brandes AA, Franceschi E, Tosoni A, Hegi ME, Stupp R (2008) Epidermal growth factor receptor inhibitors in neuro-oncology: hopes and disappointments. Clin Cancer Res 14:957–960. doi: 14/4/957 PubMedCrossRefGoogle Scholar
  14. 14.
    de Groot JF, Gilbert MR, Aldape K, Hess KR, Hanna TA, Ictech S, Groves MD, Conrad C, Colman H, Puduvalli VK, Levin V, Yung WK (2008) Phase II study of carboplatin and erlotinib (Tarceva, OSI-774) in patients with recurrent glioblastoma. J Neurooncol 90:89–97. doi: 10.1007/s11060-008-9637-y PubMedCrossRefGoogle Scholar
  15. 15.
    Peereboom DM, Shepard DR, Ahluwalia MS, Brewer CJ, Agarwal N, Stevens GH, Suh JH, Toms SA, Vogelbaum MA, Weil RJ, Elson P, Barnett GH (2010) Phase II trial of erlotinib with temozolomide and radiation in patients with newly diagnosed glioblastoma multiforme. J Neurooncol 98:93–99. doi: 10.1007/s11060-009-0067-2 PubMedCrossRefGoogle Scholar
  16. 16.
    Prados MD, Chang SM, Butowski N, DeBoer R, Parvataneni R, Carliner H, Kabuubi P, Ayers-Ringler J, Rabbitt J, Page M, Fedoroff A, Sneed PK, Berger MS, McDermott MW, Parsa AT, Vandenberg S, James CD, Lamborn KR, Stokoe D, Haas-Kogan DA (2009) Phase II study of erlotinib plus temozolomide during and after radiation therapy in patients with newly diagnosed glioblastoma multiforme or gliosarcoma. J Clin Oncol 27:579–584. doi: 10.1200/JCO.2008.18.9639 PubMedCrossRefGoogle Scholar
  17. 17.
    van den Bent MJ, Brandes AA, Rampling R, Kouwenhoven MC, Kros JM, Carpentier AF, Clement PM, Frenay M, Campone M, Baurain JF, Armand JP, Taphoorn MJ, Tosoni A, Kletzl H, Klughammer B, Lacombe D, Gorlia T (2009) Randomized phase II trial of erlotinib versus temozolomide or carmustine in recurrent glioblastoma: EORTC brain tumor group study 26034. J Clin Oncol 27:1268–1274. doi: 10.1200/JCO.2008.17.5984 PubMedCrossRefGoogle Scholar
  18. 18.
    Chakravarti A, Loeffler JS, Dyson NJ (2002) Insulin-like growth factor receptor I mediates resistance to anti-epidermal growth factor receptor therapy in primary human glioblastoma cells through continued activation of phosphoinositide 3-kinase signaling. Cancer Res 62:200–207PubMedGoogle Scholar
  19. 19.
    Mellinghoff IK, Wang MY, Vivanco I, Haas-Kogan DA, Zhu S, Dia EQ, Lu KV, Yoshimoto K, Huang JH, Chute DJ, Riggs BL, Horvath S, Liau LM, Cavenee WK, Rao PN, Beroukhim R, Peck TC, Lee JC, Sellers WR, Stokoe D, Prados M, Cloughesy TF, Sawyers CL, Mischel PS (2005) Molecular determinants of the response of glioblastomas to EGFR kinase inhibitors. N Engl J Med 353:2012–2024. doi: 10.1056/NEJMoa051918 PubMedCrossRefGoogle Scholar
  20. 20.
    Mazzoleni S, Politi LS, Pala M, Cominelli M, Franzin A, Sergi L, Falini A, De Palma M, Bulfone A, Poliani PL, Galli R (2010) Epidermal growth factor receptor expression identifies functionally and molecularly distinct tumor-initiating cells in human glioblastoma multiforme and is required for gliomagenesis. Cancer Res 70:7500–7513. doi: 10.1158/0008-5472.CAN-10-2353 PubMedCrossRefGoogle Scholar
  21. 21.
    Soeda A, Inagaki A, Oka N, Ikegame Y, Aoki H, Yoshimura S, Nakashima S, Kunisada T, Iwama T (2008) Epidermal growth factor plays a crucial role in mitogenic regulation of human brain tumor stem cells. J Biol Chem 283:10958–10966. doi: 10.1074/jbc.M704205200 PubMedCrossRefGoogle Scholar
  22. 22.
    Schneider MR, Wolf E (2009) The epidermal growth factor receptor ligands at a glance. J Cell Physiol 218:460–466. doi: 10.1002/jcp.21635 PubMedCrossRefGoogle Scholar
  23. 23.
    Stea B, Falsey R, Kislin K, Patel J, Glanzberg H, Carey S, Ambrad AA, Meuillet EJ, Martinez JD (2003) Time and dose-dependent radiosensitization of the glioblastoma multiforme U251 cells by the EGF receptor tyrosine kinase inhibitor ZD1839 (‘Iressa’). Cancer Lett 202:43–51. doi: S0304383503005159 PubMedCrossRefGoogle Scholar
  24. 24.
    Maier P, Fleckenstein K, Li L, Laufs S, Zeller WJ, Baum C, Fruehauf S, Herskind C, Wenz F (2006) Overexpression of MDR1 using a retroviral vector differentially regulates genes involved in detoxification and apoptosis and confers radioprotection. Radiat Res 166:463–473. doi: 10.1667/RR0550.1 PubMedCrossRefGoogle Scholar
  25. 25.
    Rojas M, Yao S, Lin YZ (1996) Controlling epidermal growth factor (EGF)-stimulated Ras activation in intact cells by a cell-permeable peptide mimicking phosphorylated EGF receptor. J Biol Chem 271:27456–27461PubMedCrossRefGoogle Scholar
  26. 26.
    Zwick E, Hackel PO, Prenzel N, Ullrich A (1999) The EGF receptor as central transducer of heterologous signalling systems. Trends Pharmacol Sci 20:408–412. doi: S0165-6147(99)01373-5 PubMedCrossRefGoogle Scholar
  27. 27.
    Ishii N, Maier D, Merlo A, Tada M, Sawamura Y, Diserens AC, Van Meir EG (1999) Frequent co-alterations of TP53, p16/CDKN2A, p14ARF, PTEN tumor suppressor genes in human glioma cell lines. Brain Pathol 9:469–479PubMedCrossRefGoogle Scholar
  28. 28.
    Andl CD (2010) The Misregulation of Cell Adhesion Components during Tumorigenesis: overview and Commentary. J Oncol. doi: 10.1155/2010/174715 Google Scholar
  29. 29.
    Griffero F, Daga A, Marubbi D, Capra MC, Melotti A, Pattarozzi A, Gatti M, Bajetto A, Porcile C, Barbieri F, Favoni RE, Lo Casto M, Zona G, Spaziante R, Florio T, Corte G (2009) Different response of human glioma tumor-initiating cells to epidermal growth factor receptor kinase inhibitors. J Biol Chem 284:7138–7148. doi: 10.1074/jbc.M807111200 PubMedCrossRefGoogle Scholar
  30. 30.
    Dittmann K, Mayer C, Rodemann HP (2010) Nuclear EGFR as novel therapeutic target: insights into nuclear translocation and function. Strahlenther Onkol 186:1–6. doi: 10.1007/s00066-009-2026-4 PubMedCrossRefGoogle Scholar
  31. 31.
    Grana TM, Rusyn EV, Zhou H, Sartor CI, Cox AD (2002) Ras mediates radioresistance through both phosphatidylinositol 3-kinase-dependent and Raf-dependent but mitogen-activated protein kinase/extracellular signal-regulated kinase kinase-independent signaling pathways. Cancer Res 62:4142–4150PubMedGoogle Scholar
  32. 32.
    Chitnis MM, Yuen JS, Protheroe AS, Pollak M, Macaulay VM (2008) The type 1 insulin-like growth factor receptor pathway. Clin Cancer Res 14:6364–6370. doi: 10.1158/1078-0432.CCR-07-4879 PubMedCrossRefGoogle Scholar
  33. 33.
    Kurmasheva RT, Houghton PJ (2006) IGF-I mediated survival pathways in normal and malignant cells. Biochim Biophys Acta 1766:1–22. doi: 10.1016/j.bbcan.2006.05.003 PubMedGoogle Scholar
  34. 34.
    Carapancea M, Alexandru O, Fetea AS, Dragutescu L, Castro J, Georgescu A, Popa-Wagner A, Backlund ML, Lewensohn R, Dricu A (2009) Growth factor receptors signaling in glioblastoma cells: therapeutic implications. J Neurooncol 92:137–147. doi: 10.1007/s11060-008-9753-8 PubMedCrossRefGoogle Scholar
  35. 35.
    Hafizi S, Dahlback B (2006) Gas6 and protein S. Vitamin K-dependent ligands for the Axl receptor tyrosine kinase subfamily. FEBS J 273:5231–5244. doi: 10.1111/j.1742-4658.2006.05529.x PubMedCrossRefGoogle Scholar
  36. 36.
    Funakoshi H, Yonemasu T, Nakano T, Matumoto K, Nakamura T (2002) Identification of Gas6, a putative ligand for Sky and Axl receptor tyrosine kinases, as a novel neurotrophic factor for hippocampal neurons. J Neurosci Res 68:150–160. doi: 10.1002/jnr.10211 PubMedCrossRefGoogle Scholar
  37. 37.
    Stitt TN, Conn G, Gore M, Lai C, Bruno J, Radziejewski C, Mattsson K, Fisher J, Gies DR, Jones PF et al (1995) The anticoagulation factor protein S and its relative, Gas6, are ligands for the Tyro 3/Axl family of receptor tyrosine kinases. Cell 80:661–670. doi: 0092-8674(95)90520-0 PubMedCrossRefGoogle Scholar
  38. 38.
    Shankar SL, O’Guin K, Cammer M, McMorris FA, Stitt TN, Basch RS, Varnum B, Shafit-Zagardo B (2003) The growth arrest-specific gene product Gas6 promotes the survival of human oligodendrocytes via a phosphatidylinositol 3-kinase-dependent pathway. J Neurosci 23:4208–4218. doi: 23/10/4208 PubMedGoogle Scholar
  39. 39.
    Roovers K, Assoian RK (2000) Integrating the MAP kinase signal into the G1 phase cell cycle machinery. Bioessays 22:818–826. doi: 10.1002/1521-1878(200009) PubMedCrossRefGoogle Scholar
  40. 40.
    Larsen M, Artym VV, Green JA, Yamada KM (2006) The matrix reorganized: extracellular matrix remodeling and integrin signaling. Curr Opin Cell Biol 18:463–471. doi: 10.1016/j.ceb.2006.08.009 PubMedCrossRefGoogle Scholar
  41. 41.
    Mikkelsen T, Brodie C, Finniss S, Berens ME, Rennert JL, Nelson K, Lemke N, Brown SL, Hahn D, Neuteboom B, Goodman SL (2008) Radiation sensitization of glioblastoma by cilengitide has unanticipated schedule-dependency. Int J Cancer. doi: 10.1002/ijc.24240 Google Scholar
  42. 42.
    Gu J, Tamura M, Yamada KM (1998) Tumor suppressor PTEN inhibits integrin- and growth factor-mediated mitogen-activated protein (MAP) kinase signaling pathways. J Cell Biol 143:1375–1383PubMedCrossRefGoogle Scholar
  43. 43.
    Wang D, Grammer JR, Cobbs CS, Stewart JE Jr, Liu Z, Rhoden R, Hecker TP, Ding Q, Gladson CL (2000) p125 focal adhesion kinase promotes malignant astrocytoma cell proliferation in vivo. J Cell Sci 113(Pt 23):4221–4230PubMedGoogle Scholar
  44. 44.
    Ulrich TA, de Juan Pardo EM, Kumar S (2009) The mechanical rigidity of the extracellular matrix regulates the structure, motility, and proliferation of glioma cells. Cancer Res 69:4167–4174. doi: 10.1158/0008-5472.CAN-08-4859 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Meng Wang
    • 1
    • 2
  • Patrick Maier
    • 1
  • Frederik Wenz
    • 1
  • Frank Anton Giordano
    • 1
  • Carsten Herskind
    • 1
  1. 1.Department of Radiation OncologyUniversitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg UniversityMannheimGermany
  2. 2.Laboratory of Cellular & Molecular Radiation Oncology, Department of Radiation OncologyMassachusetts General Hospital Cancer CenterCharlestownUSA

Personalised recommendations