Journal of Neuro-Oncology

, Volume 113, Issue 1, pp 1–11 | Cite as

Biogenesis of extracellular vesicles (EV): exosomes, microvesicles, retrovirus-like vesicles, and apoptotic bodies

  • Johnny C. Akers
  • David Gonda
  • Ryan Kim
  • Bob S. Carter
  • Clark C. ChenEmail author
Topic Review


Recent studies suggest both normal and cancerous cells secrete vesicles into the extracellular space. These extracellular vesicles (EVs) contain materials that mirror the genetic and proteomic content of the secreting cell. The identification of cancer-specific material in EVs isolated from the biofluids (e.g., serum, cerebrospinal fluid, urine) of cancer patients suggests EVs as an attractive platform for biomarker development. It is important to recognize that the EVs derived from clinical samples are likely highly heterogeneous in make-up and arose from diverse sets of biologic processes. This article aims to review the biologic processes that give rise to various types of EVs, including exosomes, microvesicles, retrovirus like particles, and apoptotic bodies. Clinical pertinence of these EVs to neuro-oncology will also be discussed.


Biomarkers Intracellular trafficking Membrane budding Tetraspanin Multi-vesicular bodies (MVB) Tumor microenvironment Cancer 



30–100 nm secreted vesicles that originate from the endosomal network


50–2,000 nm vesicles that arise through direct outward budding and fission of the plasma membrane

Retrovirus-like particles

90–100 nm non-infectious vesicles that resemble retroviral vesicles and contain a subset of retroviral proteins

Apoptotic bodies

50–5,000 nm vesicles produced from cell undergoing cell death by apoptosis


Extracellular vesicle


Retrovirus like particle


Intraluminal vesicle


Multivesicular body


Tetraspanin enriched microdomain


Endosomal sorting complex required for transport


Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Skog J et al (2008) Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol 10(12):1470–1476PubMedGoogle Scholar
  2. 2.
    Raposo G et al (1996) B lymphocytes secrete antigen-presenting vesicles. J Exp Med 183(3):1161–1172PubMedGoogle Scholar
  3. 3.
    Blanchard N et al (2002) TCR activation of human T cells induces the production of exosomes bearing the TCR/CD3/zeta complex. J Immunol 168(7):3235–3241PubMedGoogle Scholar
  4. 4.
    Andre F et al (2004) Exosomes as potent cell-free peptide-based vaccine. I. Dendritic cell-derived exosomes transfer functional MHC class I/peptide complexes to dendritic cells. J Immunol 172(4):2126–2136PubMedGoogle Scholar
  5. 5.
    Taylor DD, Akyol S, Gercel-Taylor C (2006) Pregnancy-associated exosomes and their modulation of t cell signaling. J Immunol 176(3):1534–1542PubMedGoogle Scholar
  6. 6.
    Miyanishi M et al (2007) Identification of Tim4 as a phosphatidylserine receptor. Nature 450(7168):435–439PubMedGoogle Scholar
  7. 7.
    Denzer K et al (2000) Follicular dendritic cells carry MHC class II-expressing microvesicles at their surface. J Immunol 165(3):1259–1265PubMedGoogle Scholar
  8. 8.
    Clayton A et al (2004) Adhesion and signaling by B cell-derived exosomes: the role of integrins. FASEB J 18(9):977–979PubMedGoogle Scholar
  9. 9.
    Valadi H et al (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9(6):654–659PubMedGoogle Scholar
  10. 10.
    Taylor DD, Gercel-Taylor C (2008) MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol Oncol 110(1):13–21PubMedGoogle Scholar
  11. 11.
    Rabinowits G et al (2009) Exosomal microRNA: a diagnostic marker for lung cancer. Clin Lung Cancer 10(1):42–46PubMedGoogle Scholar
  12. 12.
    Al-Nedawi K, Meehan B, Rak J (2009) Microvesicles: messengers and mediators of tumor progression. Cell Cycle 8(13):2014–2018PubMedGoogle Scholar
  13. 13.
    Balaj L et al (2011) Tumour microvesicles contain retrotransposon elements and amplified oncogene sequences. Nat Commun 2:180PubMedGoogle Scholar
  14. 14.
    Shen B et al (2011) Protein targeting to exosomes/microvesicles by plasma membrane anchors. J Biol Chem 286(16):14383–14395PubMedGoogle Scholar
  15. 15.
    Heijnen HF et al (1999) Activated platelets release two types of membrane vesicles: microvesicles by surface shedding and exosomes derived from exocytosis of multivesicular bodies and alpha-granules. Blood 94(11):3791–3799PubMedGoogle Scholar
  16. 16.
    Denzer K et al (2000) Exosome: from internal vesicle of the multivesicular body to intercellular signaling device. J Cell Sci 113(Pt 19):3365–3374PubMedGoogle Scholar
  17. 17.
    Thery C et al (2006) Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol. Chapter 3: Unit 3.22Google Scholar
  18. 18.
    Lamparski HG et al (2002) Production and characterization of clinical grade exosomes derived from dendritic cells. J Immunol Methods 270(2):211–226PubMedGoogle Scholar
  19. 19.
    Clayton A et al (2001) Analysis of antigen presenting cell derived exosomes, based on immuno-magnetic isolation and flow cytometry. J Immunol Methods 247(1–2):163–174PubMedGoogle Scholar
  20. 20.
    Koga K et al (2005) Purification, characterization and biological significance of tumor-derived exosomes. Anticancer Res 25(6A):3703–3707PubMedGoogle Scholar
  21. 21.
    Dragovic RA et al (2011) Sizing and phenotyping of cellular vesicles using Nanoparticle Tracking Analysis. Nanomedicine 7(6):780–788PubMedGoogle Scholar
  22. 22.
    Escola JM et al (1998) Selective enrichment of tetraspan proteins on the internal vesicles of multivesicular endosomes and on exosomes secreted by human B-lymphocytes. J Biol Chem 273(32):20121–20127PubMedGoogle Scholar
  23. 23.
    Thery C et al (1999) Molecular characterization of dendritic cell-derived exosomes. Selective accumulation of the heat shock protein hsc73. J Cell Biol 147(3):599–610PubMedGoogle Scholar
  24. 24.
    Johnstone RM et al (1987) Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). J Biol Chem 262(19):9412–9420PubMedGoogle Scholar
  25. 25.
    Pan BT et al (1985) Electron microscopic evidence for externalization of the transferrin receptor in vesicular form in sheep reticulocytes. J Cell Biol 101(3):942–948PubMedGoogle Scholar
  26. 26.
    Mitchell P et al (1997) The exosome: a conserved eukaryotic RNA processing complex containing multiple 3′ → 5′ exoribonucleases. Cell 91(4):457–466PubMedGoogle Scholar
  27. 27.
    Sotelo JR, Porter KR (1959) An electron microscope study of the rat ovum. J Biophys Biochem Cytol 5(2):327–342PubMedGoogle Scholar
  28. 28.
    Odorizzi G, Babst M, Emr SD (1998) Fab1p PtdIns(3)P 5-kinase function essential for protein sorting in the multivesicular body. Cell 95(6):847–858PubMedGoogle Scholar
  29. 29.
    Reggiori F, Pelham HRB (2001) Sorting of proteins into multivesicular bodies: ubiquitin-dependent and -independent targeting. EMBO J 20(18):5176–5186PubMedGoogle Scholar
  30. 30.
    Nickerson DP et al (2010) Regulators of Vps4 ATPase activity at endosomes differentially influence the size and rate of formation of intralumenal vesicles. Mol Biol Cell 21(6):1023–1032PubMedGoogle Scholar
  31. 31.
    Babst M (2005) A protein’s final ESCRT. Traffic 6(1):2–9PubMedGoogle Scholar
  32. 32.
    Hurley JH, Emr SD (2006) The ESCRT complexes: structure and mechanism of a membrane-trafficking network. Annu Rev Biophys Biomol Struct 35:277–298PubMedGoogle Scholar
  33. 33.
    Katzmann DJ, Odorizzi G, Emr SD (2002) Receptor downregulation and multivesicular-body sorting. Nat Rev Mol Cell Biol 3(12):893–905PubMedGoogle Scholar
  34. 34.
    Slagsvold T et al (2006) Endosomal and non-endosomal functions of ESCRT proteins. Trends Cell Biol 16(6):317–326PubMedGoogle Scholar
  35. 35.
    Pols MS, Klumperman J (2009) Trafficking and function of the tetraspanin CD63. Exp Cell Res 315(9):1584–1592PubMedGoogle Scholar
  36. 36.
    Hemler ME (2005) Tetraspanin functions and associated microdomains. Nat Rev Mol Cell Biol 6(10):801–811PubMedGoogle Scholar
  37. 37.
    Jansen FH et al (2009) Exosomal secretion of cytoplasmic prostate cancer xenograft-derived proteins. Mol Cell Proteomics 8(6):1192–1205PubMedGoogle Scholar
  38. 38.
    Kosaka N et al (2010) Secretory mechanisms and intercellular transfer of microRNAs in living cells. J Biol Chem 285(23):17442–17452PubMedGoogle Scholar
  39. 39.
    Wollert T, Hurley JH (2010) Molecular mechanism of multivesicular body biogenesis by ESCRT complexes. Nature 464(7290):864–869PubMedGoogle Scholar
  40. 40.
    Hurley JH, Hanson PI (2010) Membrane budding and scission by the ESCRT machinery: it’s all in the neck. Nat Rev Mol Cell Biol 11(8):556–566PubMedGoogle Scholar
  41. 41.
    Babst M et al (2002) Escrt-III: an endosome-associated heterooligomeric protein complex required for mvb sorting. Dev Cell 3(2):271–282PubMedGoogle Scholar
  42. 42.
    Babst M (2011) MVB vesicle formation: ESCRT-dependent, ESCRT-independent and everything in between. Curr Opin Cell Biol 23(4):452–457PubMedGoogle Scholar
  43. 43.
    McCullough J et al (2008) ALIX-CHMP4 interactions in the human ESCRT pathway. Proc Natl Acad Sci USA 105(22):7687–7691PubMedGoogle Scholar
  44. 44.
    Katoh K et al (2003) The ALG-2-interacting protein Alix associates with CHMP4b, a human homologue of yeast Snf7 that is involved in multivesicular body sorting. J Biol Chem 278(40):39104–39113PubMedGoogle Scholar
  45. 45.
    Strack B et al (2003) AIP1/ALIX is a binding partner for HIV-1 p6 and EIAV p9 functioning in virus budding. Cell 114(6):689–699PubMedGoogle Scholar
  46. 46.
    Lasser C, Eldh M, Lotvall J (2012) Isolation and characterization of RNA-containing exosomes. J Vis Exp 59:e3037PubMedGoogle Scholar
  47. 47.
    Fernandez-Llama P et al (2012) Tamm-Horsfall protein and urinary exosome isolation. Kidney Int 77(8):736–742Google Scholar
  48. 48.
    Trajkovic K et al (2008) Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science 319(5867):1244–1247PubMedGoogle Scholar
  49. 49.
    Fang Y et al (2007) Higher-order oligomerization targets plasma membrane proteins and HIV gag to exosomes. PLoS Biol 5(6):e158PubMedGoogle Scholar
  50. 50.
    Schroder J et al (2009) Deficiency of the tetraspanin CD63 associated with kidney pathology but normal lysosomal function. Mol Cell Biol 29(4):1083–1094PubMedGoogle Scholar
  51. 51.
    Beinert T et al (2000) Increased expression of the tetraspanins CD53 and CD63 on apoptotic human neutrophils. J Leukoc Biol 67(3):369–373PubMedGoogle Scholar
  52. 52.
    Nishibori M et al (1993) The protein CD63 is in platelet dense granules, is deficient in a patient with Hermansky-Pudlak syndrome, and appears identical to granulophysin. J Clin Invest 91(4):1775–1782PubMedGoogle Scholar
  53. 53.
    Kobayashi T et al (2000) The tetraspanin CD63/lamp3 cycles between endocytic and secretory compartments in human endothelial cells. Mol Biol Cell 11(5):1829–1843PubMedGoogle Scholar
  54. 54.
    Heijnen HF et al (1998) Multivesicular bodies are an intermediate stage in the formation of platelet alpha-granules. Blood 91(7):2313–2325PubMedGoogle Scholar
  55. 55.
    Peters PJ et al (1991) Cytotoxic T lymphocyte granules are secretory lysosomes, containing both perforin and granzymes. J Exp Med 173(5):1099–1109PubMedGoogle Scholar
  56. 56.
    Mahmudi-Azer S, Downey GP, Moqbel R (2002) Translocation of the tetraspanin CD63 in association with human eosinophil mediator release. Blood 99(11):4039–4047PubMedGoogle Scholar
  57. 57.
    Escribano L et al (1998) Human bone marrow mast cells from indolent systemic mast cell disease constitutively express increased amounts of the CD63 protein on their surface. Cytometry 34(5):223–228PubMedGoogle Scholar
  58. 58.
    Nishikata H et al (1992) The rat mast cell antigen AD1 (homologue to human CD63 or melanoma antigen ME491) is expressed in other cells in culture. J Immunol 149(3):862–870PubMedGoogle Scholar
  59. 59.
    Cocucci E, Racchetti G, Meldolesi J (2009) Shedding microvesicles: artefacts no more. Trends Cell Biol 19(2):43–51PubMedGoogle Scholar
  60. 60.
    Hess C et al (1999) Ectosomes released by human neutrophils are specialized functional units. J Immunol 163(8):4564–4573PubMedGoogle Scholar
  61. 61.
    Stein JM, Luzio JP (1991) Ectocytosis caused by sublytic autologous complement attack on human neutrophils. The sorting of endogenous plasma-membrane proteins and lipids into shed vesicles. Biochem J 274(Pt 2):381–386PubMedGoogle Scholar
  62. 62.
    Zwaal RF, Schroit AJ (1997) Pathophysiologic implications of membrane phospholipid asymmetry in blood cells. Blood 89(4):1121–1132PubMedGoogle Scholar
  63. 63.
    Bevers EM et al (1999) Lipid translocation across the plasma membrane of mammalian cells. Biochim Biophys Acta 1439(3):317–330PubMedGoogle Scholar
  64. 64.
    Leventis PA, Grinstein S (2010) The distribution and function of phosphatidylserine in cellular membranes. Annu Rev Biophys 39:407–427PubMedGoogle Scholar
  65. 65.
    Hugel B et al (2005) Membrane microparticles: two sides of the coin. Physiology (Bethesda) 20:22–27Google Scholar
  66. 66.
    Muralidharan-Chari V et al (2009) ARF6-regulated shedding of tumor cell-derived plasma membrane microvesicles. Curr Biol 19(22):1875–1885PubMedGoogle Scholar
  67. 67.
    McConnell RE et al (2009) The enterocyte microvillus is a vesicle-generating organelle. J Cell Biol 185(7):1285–1298PubMedGoogle Scholar
  68. 68.
    Muralidharan-Chari V et al (2010) Microvesicles: mediators of extracellular communication during cancer progression. J Cell Sci 123(Pt 10):1603–1611PubMedGoogle Scholar
  69. 69.
    Bronson DL et al (1979) Induction of retrovirus particles in human testicular tumor (Tera-1) cell cultures: an electron microscopic study. J Natl Cancer Inst 63(2):337–339PubMedGoogle Scholar
  70. 70.
    Boller K et al (1993) Evidence that HERV-K is the endogenous retrovirus sequence that codes for the human teratocarcinoma-derived retrovirus HTDV. Virology 196(1):349–353PubMedGoogle Scholar
  71. 71.
    Mueller-Lantzsch N et al (1993) Human endogenous retroviral element K10 (HERV-K10) encodes a full-length gag homologous 73-kDa protein and a functional protease. AIDS Res Hum Retroviruses 9(4):343–350PubMedGoogle Scholar
  72. 72.
    Dewannieux M, Blaise S, Heidmann T (2005) Identification of a functional envelope protein from the HERV-K family of human endogenous retroviruses. J Virol 79(24):15573–15577PubMedGoogle Scholar
  73. 73.
    Barbulescu M et al (1999) Many human endogenous retrovirus K (HERV-K) proviruses are unique to humans. Curr Biol 9(16):861–868PubMedGoogle Scholar
  74. 74.
    Bock M, Stoye JP (2000) Endogenous retroviruses and the human germline. Curr Opin Genet Dev 10(6):651–655PubMedGoogle Scholar
  75. 75.
    Florl AR et al (1999) DNA methylation and expression of LINE-1 and HERV-K provirus sequences in urothelial and renal cell carcinomas. Br J Cancer 80(9):1312–1321PubMedGoogle Scholar
  76. 76.
    Gotzinger N et al (1996) Regulation of human endogenous retrovirus-K Gag expression in teratocarcinoma cell lines and human tumours. J Gen Virol 77(Pt 12):2983–2990PubMedGoogle Scholar
  77. 77.
    Yoder JA, Walsh CP, Bestor TH (1997) Cytosine methylation and the ecology of intragenomic parasites. Trends Genet 13(8):335–340PubMedGoogle Scholar
  78. 78.
    Depil S et al (2002) Expression of a human endogenous retrovirus, HERV-K, in the blood cells of leukemia patients. Leukemia 16(2):254–259PubMedGoogle Scholar
  79. 79.
    Reiche J, Pauli G, Ellerbrok H (2010) Differential expression of human endogenous retrovirus K transcripts in primary human melanocytes and melanoma cell lines after UV irradiation. Melanoma Res 20(5):435–440PubMedGoogle Scholar
  80. 80.
    Golan M et al (2008) Human endogenous retrovirus (HERV-K) reverse transcriptase as a breast cancer prognostic marker. Neoplasia 10(6):521–533PubMedGoogle Scholar
  81. 81.
    Wang-Johanning F et al (2003) Quantitation of HERV-K env gene expression and splicing in human breast cancer. Oncogene 22(10):1528–1535PubMedGoogle Scholar
  82. 82.
    Taruscio D, Mantovani A (2004) Factors regulating endogenous retroviral sequences in human and mouse. Cytogenet Genome Res 105(2–4):351–362PubMedGoogle Scholar
  83. 83.
    Bieda K, Hoffmann A, Boller K (2001) Phenotypic heterogeneity of human endogenous retrovirus particles produced by teratocarcinoma cell lines. J Gen Virol 82(Pt 3):591–596PubMedGoogle Scholar
  84. 84.
    Pincetic A, Leis J (2009) The mechanism of budding of retroviruses from cell membranes. Adv Virol 2009:6239691–6239699PubMedGoogle Scholar
  85. 85.
    Gladnikoff M et al (2009) Retroviral assembly and budding occur through an actin-driven mechanism. Biophys J 97(9):2419–2428PubMedGoogle Scholar
  86. 86.
    Muster T et al (2003) An endogenous retrovirus derived from human melanoma cells. Cancer Res 63(24):8735–8741PubMedGoogle Scholar
  87. 87.
    Buscher K et al (2006) Expression of the human endogenous retrovirus-K transmembrane envelope, Rec and Np9 proteins in melanomas and melanoma cell lines. Melanoma Res 16(3):223–234PubMedGoogle Scholar
  88. 88.
    Seifarth W et al (1995) Retrovirus-like particles released from the human breast cancer cell line T47-D display type B- and C-related endogenous retroviral sequences. J Virol 69(10):6408–6416PubMedGoogle Scholar
  89. 89.
    Lai OY et al (2012) Protective effect of human endogenous retrovirus K dUTPase variants on psoriasis susceptibility. J Invest Dermatol 132(7):1833–1840PubMedGoogle Scholar
  90. 90.
    Al-Sumidaie AM et al (1988) Particles with properties of retroviruses in monocytes from patients with breast cancer. Lancet 1(8575–6):5–9PubMedGoogle Scholar
  91. 91.
    Contreras-Galindo R et al (2008) Human endogenous retrovirus K (HML-2) elements in the plasma of people with lymphoma and breast cancer. J Virol 82(19):9329–9336PubMedGoogle Scholar
  92. 92.
    Graner MW et al (2009) Proteomic and immunologic analyses of brain tumor exosomes. FASEB J 23(5):1541–1557PubMedGoogle Scholar
  93. 93.
    Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26(4):239–257PubMedGoogle Scholar
  94. 94.
    Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35(4):495–516PubMedGoogle Scholar
  95. 95.
    Ihara T et al (1998) The process of ultrastructural changes from nuclei to apoptotic body. Virchows Arch 433(5):443–447PubMedGoogle Scholar
  96. 96.
    Hristov M et al (2004) Apoptotic bodies from endothelial cells enhance the number and initiate the differentiation of human endothelial progenitor cells in vitro. Blood 104(9):2761–2766PubMedGoogle Scholar
  97. 97.
    Taylor RC, Cullen SP, Martin SJ (2008) Apoptosis: controlled demolition at the cellular level. Nat Rev Mol Cell Biol 9(3):231–241PubMedGoogle Scholar
  98. 98.
    Simpson RJ, Mathivanan S (2012) Extracellular microvesicles: the need for internationally recognised nomenclature and stringent purification criteria. J Proteomics Bioinform 5:ii–iiGoogle Scholar
  99. 99.
    Coleman ML et al (2001) Membrane blebbing during apoptosis results from caspase-mediated activation of ROCK I. Nat Cell Biol 3(4):339–345PubMedGoogle Scholar
  100. 100.
    Sebbagh M et al (2001) Caspase-3-mediated cleavage of ROCK I induces MLC phosphorylation and apoptotic membrane blebbing. Nat Cell Biol 3(4):346–352PubMedGoogle Scholar
  101. 101.
    Erwig LP, Henson PM (2008) Clearance of apoptotic cells by phagocytes. Cell Death Differ 15(2):243–250PubMedGoogle Scholar
  102. 102.
    Takizawa F, Tsuji S, Nagasawa S (1996) Enhancement of macrophage phagocytosis upon iC3b deposition on apoptotic cells. FEBS Lett 397(2–3):269–272PubMedGoogle Scholar
  103. 103.
    Fadok VA et al (1992) Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages. J Immunol 148(7):2207–2216PubMedGoogle Scholar
  104. 104.
    Martin SJ et al (1995) Early redistribution of plasma membrane phosphatidylserine is a general feature of apoptosis regardless of the initiating stimulus: inhibition by overexpression of Bcl-2 and Abl. J Exp Med 182(5):1545–1556PubMedGoogle Scholar
  105. 105.
    Vandivier RW et al (2002) Role of surfactant proteins A, D, and C1q in the clearance of apoptotic cells in vivo and in vitro: calreticulin and CD91 as a common collectin receptor complex. J Immunol 169(7):3978–3986PubMedGoogle Scholar
  106. 106.
    Martinez MC, Freyssinet JM (2001) Deciphering the plasma membrane hallmarks of apoptotic cells: phosphatidylserine transverse redistribution and calcium entry. BMC Cell Biol 2:20PubMedGoogle Scholar
  107. 107.
    Friedl P, Vischer P, Freyberg MA (2002) The role of thrombospondin-1 in apoptosis. Cell Mol Life Sci 59(8):1347–1357PubMedGoogle Scholar
  108. 108.
    Savill J (1997) Recognition and phagocytosis of cells undergoing apoptosis. Br Med Bull 53(3):491–508PubMedGoogle Scholar
  109. 109.
    Savill J et al (1992) Thrombospondin cooperates with CD36 and the vitronectin receptor in macrophage recognition of neutrophils undergoing apoptosis. J Clin Invest 90(4):1513–1522PubMedGoogle Scholar
  110. 110.
    Mevorach D et al (1998) Complement-dependent clearance of apoptotic cells by human macrophages. J Exp Med 188(12):2313–2320PubMedGoogle Scholar
  111. 111.
    van Engeland M et al (1998) Annexin V-affinity assay: a review on an apoptosis detection system based on phosphatidylserine exposure. Cytometry 31(1):1–9PubMedGoogle Scholar
  112. 112.
    Miranda KC et al (2010) Nucleic acids within urinary exosomes/microvesicles are potential biomarkers for renal disease. Kidney Int 78(2):191–199PubMedGoogle Scholar
  113. 113.
    Samos J et al (2006) Circulating nucleic acids in plasma/serum and tumor progression: are apoptotic bodies involved? An experimental study in a rat cancer model. Ann N Y Acad Sci 1075:165–173PubMedGoogle Scholar
  114. 114.
    Bergsmedh A et al (2001) Horizontal transfer of oncogenes by uptake of apoptotic bodies. Proc Natl Acad Sci USA 98(11):6407–6411PubMedGoogle Scholar
  115. 115.
    Piper RC, Katzmann DJ (2007) Biogenesis and function of multivesicular bodies. Annu Rev Cell Dev Biol 23:519–547PubMedGoogle Scholar
  116. 116.
    Thery C, Zitvogel L, Amigorena S (2002) Exosomes: composition, biogenesis and function. Nat Rev Immunol 2(8):569–579PubMedGoogle Scholar
  117. 117.
    Bard MP et al (2004) Proteomic analysis of exosomes isolated from human malignant pleural effusions. Am J Respir Cell Mol Biol 31(1):114–121PubMedGoogle Scholar
  118. 118.
    Noerholm M et al (2012) RNA expression patterns in serum microvesicles from patients with glioblastoma multiforme and controls. BMC Cancer 12(1):22PubMedGoogle Scholar
  119. 119.
    Chen C et al (2010) Microfluidic isolation and transcriptome analysis of serum microvesicles. Lab Chip 10(4):505–511PubMedGoogle Scholar
  120. 120.
    Gonda DD et al (2013) Neuro-oncologic applications of exosomes, microvesicles, and other nano-sized extra-cellular particles. Neurosurgery. doi: 10.1227/NEU.0b013e3182846e63 (in press)
  121. 121.
    Shao H et al (2012) Protein typing of circulating microvesicles allows real-time monitoring of glioblastoma therapy. Nat Med 18(12):1835–1840PubMedGoogle Scholar
  122. 122.
    Alvarez-Erviti L et al (2011) Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol 29(4):341–345PubMedGoogle Scholar
  123. 123.
    Chalmin F et al (2010) Membrane-associated Hsp72 from tumor-derived exosomes mediates STAT3-dependent immunosuppressive function of mouse and human myeloid-derived suppressor cells. J Clin Invest 120(2):457–471PubMedGoogle Scholar
  124. 124.
    Luciani F et al (2004) Effect of proton pump inhibitor pretreatment on resistance of solid tumors to cytotoxic drugs. J Natl Cancer Inst 96(22):1702–1713PubMedGoogle Scholar
  125. 125.
    Johnstone RM (2005) Revisiting the road to the discovery of exosomes. Blood Cells Mol Dis 34(3):214–219PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Johnny C. Akers
    • 1
    • 2
  • David Gonda
    • 1
    • 2
  • Ryan Kim
    • 1
    • 2
  • Bob S. Carter
    • 1
    • 2
  • Clark C. Chen
    • 1
    • 2
    Email author
  1. 1.Department of NeurosurgeryUniversity of California, San DiegoLa JollaUSA
  2. 2.Center for Theoretic and Applied Neuro-OncologyUniversity of California, San DiegoLa JollaUSA

Personalised recommendations