Journal of Neuro-Oncology

, Volume 112, Issue 3, pp 347–354 | Cite as

Comparison of microRNA expression levels between initial and recurrent glioblastoma specimens

  • Aysegül Ilhan-Mutlu
  • Adelheid Wöhrer
  • Anna Sophie Berghoff
  • Georg Widhalm
  • Christine Marosi
  • Ludwig Wagner
  • Matthias PreusserEmail author
Laboratory Investigation


Glioblastoma is the most frequent primary brain tumour in adults. Recent therapeutic advances increased patient's survival, but tumour recurrence inevitably occurs. The pathobiological mechanisms involved in glioblastoma recurrence are still unclear. MicroRNAs are small RNAs proposed o have important roles for cancer including proliferation, aggressiveness and metastases development. There exist only few data on the involvement of microRNAs in glioblastoma recurrence. We selected the following 7 microRNAs with potential relevance for glioblastoma pathobiology by means of a comprehensive literature search: microRNA-10b, microRNA-21, microRNA-181b, microRNA-181c, microRNA-195, microRNA-221 and microRNA-222. We further selected 15 primary glioblastoma patients, of whom formalin fixed and paraffin embedded tissue (FFPE) of the initial and recurrence surgery were available. All patients had received first line treatment consisting of postoperative combined radiochemotherapy with temozolomide (n = 15). Non-neoplastic brain tissue samples from 3 patients with temporal lobe epilepsy served as control. The expression of the microRNAs were analysed by RT-qPCR. These were correlated with each other and with clinical parameters. All microRNAs showed detectable levels of expressions in glioblastoma group, whereas microRNA-10b was not detectable in epilepsy patients. MicroRNAs except microRNA-21 showed significantly higher levels in epilepsy patients when compared to the levels of first resection of glioblastoma. Comparison of microRNA levels between first and second resections revealed no significant change. Cox regression analyses showed no significant association of microRNA expression levels in the tumor tissue with progression free survival times. Expression levels of microRNA-10b, microRNA-21, microRNA-181b, microRNA-181c, microRNA-195, microRNA-221 and microRNA-222 do not differ significantly between initial and recurrent glioblastoma.


Glioblastoma Recurrence MicroRNA FFPE tissue 



We thank Ms. Zeljka Stajanovic for the technical assistance. This work was financed with a grant from “Hochschuljubiläumsstiftung der Stadt Wien” with the grant number H-2234/2011. This project received a Poster Award at the European Association of Neuro-oncology (EANO X) Meeting in September 2012 Marseille, France.

Conflict of interest

None of the authors declares a conflict of interest with regard to the manuscript contents.


  1. 1.
    Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, Curschmann J, Janzer RC, Ludwin SK, Gorlia T, Allgeier A, Lacombe D, Cairncross JG, Eisenhauer E, Mirimanoff RO (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996PubMedCrossRefGoogle Scholar
  2. 2.
    Stupp R, Roila F (2009) Malignant glioma: ESMO clinical recommendations for diagnosis, treatment and follow-up. Ann Oncol 20(Suppl 4):126–128PubMedGoogle Scholar
  3. 3.
    Preusser M, de Ribaupierre S, Wohrer A, Erridge SC, Hegi M, Weller M, Stupp R (2011) Current concepts and management of glioblastoma. Ann Neurol 70:9–21PubMedCrossRefGoogle Scholar
  4. 4.
    Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297PubMedCrossRefGoogle Scholar
  5. 5.
    Gabriely G, Wurdinger T, Kesari S, Esau CC, Burchard J, Linsley PS, Krichevsky AM (2008) MicroRNA 21 promotes glioma invasion by targeting matrix metalloproteinase regulators. Mol Cell Biol 28:5369–5380PubMedCrossRefGoogle Scholar
  6. 6.
    Conti A, Aguennouz M, La Torre D, Tomasello C, Cardali S, Angileri FF, Maio F, Cama A, Germano A, Vita G, Tomasello F (2009) MiR-21 and 221 upregulation and miR-181b downregulation in human grade II-IV astrocytic tumors. J Neurooncol 93:325–332PubMedCrossRefGoogle Scholar
  7. 7.
    Shi L, Chen J, Yang J, Pan T, Zhang S, Wang Z (2010) MiR-21 protected human glioblastoma U87MG cells from chemotherapeutic drug temozolomide induced apoptosis by decreasing Bax/Bcl-2 ratio and caspase-3 activity. Brain Res 1352:255–264PubMedCrossRefGoogle Scholar
  8. 8.
    Sasayama T, Nishihara M, Kondoh T, Hosoda K, Kohmura E (2009) MicroRNA-10b is overexpressed in malignant glioma and associated with tumor invasive factors, uPAR and RhoC. Int J Cancer 125:1407–1413PubMedCrossRefGoogle Scholar
  9. 9.
    Slaby O, Lakomy R, Fadrus P, Hrstka R, Kren L, Lzicarova E, Smrcka M, Svoboda M, Dolezalova H, Novakova J, Valik D, Vyzula R, Michalek J (2010) MicroRNA-181 family predicts response to concomitant chemoradiotherapy with temozolomide in glioblastoma patients. Neoplasma 57:264–269PubMedCrossRefGoogle Scholar
  10. 10.
    Ujifuku K, Mitsutake N, Takakura S, Matsuse M, Saenko V, Suzuki K, Hayashi K, Matsuo T, Kamada K, Nagata I, Yamashita S (2010) MiR-195, miR-455-3p and miR-10a(*) are implicated in acquired temozolomide resistance in glioblastoma multiforme cells. Cancer Lett 296:241–248PubMedCrossRefGoogle Scholar
  11. 11.
    Preusser M, Wohrer A, Stary S, Hoftberger R, Streubel B, Hainfellner JA (2011) Value and limitations of immunohistochemistry and gene sequencing for detection of the IDH1-R132H mutation in diffuse glioma biopsy specimens. J Neuropathol Exp Neurol 70:715–723PubMedCrossRefGoogle Scholar
  12. 12.
    Preusser M, Hoeftberger R, Woehrer A, Gelpi E, Kouwenhoven M, Kros JM, Sanson M, Idbaih A, Brandes AA, Heinzl H, Gorlia T, Hainfellner JA, van den Bent M (2012) Prognostic value of Ki67 index in anaplastic oligodendroglial tumours–a translational study of the European Organization for Research and Treatment of Cancer Brain Tumor Group. Histopathology 60:885–894PubMedCrossRefGoogle Scholar
  13. 13.
    Capper D, Weissert S, Balss J, Habel A, Meyer J, Jager D, Ackermann U, Tessmer C, Korshunov A, Zentgraf H, Hartmann C, von Deimling A (2010) Characterization of R132H mutation-specific IDH1 antibody binding in brain tumors. Brain Pathol 20:245–254PubMedCrossRefGoogle Scholar
  14. 14.
    Quintavalle C, Garofalo M, Zanca C, Romano G, Iaboni M, del Basso De Caro M, Martinez-Montero JC, Incoronato M, Nuovo G, Croce CM, Condorelli G (2012) MiR-221/222 overexpession in human glioblastoma increases invasiveness by targeting the protein phosphate PTPmu. Oncogene 31: 858–868Google Scholar
  15. 15.
    Wuchty S, Arjona D, Li A, Kotliarov Y, Walling J, Ahn S, Zhang A, Maric D, Anolik R, Zenklusen JC, Fine HA (2011) Prediction of associations between microRNAs and gene expression in glioma biology. PLoS ONE 6:e14681PubMedCrossRefGoogle Scholar
  16. 16.
    Silber J, Lim DA, Petritsch C, Persson AI, Maunakea AK, Yu M, Vandenberg SR, Ginzinger DG, James CD, Costello JF, Bergers G, Weiss WA, Alvarez-Buylla A, Hodgson JG (2008) MiR-124 and miR-137 inhibit proliferation of glioblastoma multiforme cells and induce differentiation of brain tumor stem cells. BMC medicine 6:14PubMedCrossRefGoogle Scholar
  17. 17.
    Stefanits H, Czech T, Pataraia E, Baumgartner C, Derhaschnig N, Slana A, Kovacs GG (2012) Prominent oligodendroglial response in surgical specimens of patients with temporal lobe epilepsy. Clin Neuropathol 31:409–417PubMedGoogle Scholar
  18. 18.
    Lakomy R, Sana J, Hankeova S, Fadrus P, Kren L, Lzicarova E, Svoboda M, Dolezelova H, Smrcka M, Vyzula R, Michalek J, Hajduch M, Slaby O (2011) MiR-195, miR-196b, miR-181c, miR-21 expression levels and O-6-methylguanine-DNA methyltransferase methylation status are associated with clinical outcome in glioblastoma patients. Cancer Sci 102:2186–2190PubMedCrossRefGoogle Scholar
  19. 19.
    Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J, Bartel DP, Linsley PS, Johnson JM (2005) Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433:769–773PubMedCrossRefGoogle Scholar
  20. 20.
    Litofsky NS, Mix TC, Baker SP, Recht LD, Smith TW (1998) Ki-67 (clone MIB-1) proliferation index in recurrent glial neoplasms: no prognostic significance. Surg Neurol 50:579–585PubMedCrossRefGoogle Scholar
  21. 21.
    Ralte AM, Sharma MC, Karak AK, Mehta VS, Sarkar C (2001) Clinicopathological features, MIB-1 labeling index and apoptotic index in recurrent astrocytic tumors. Pathol Oncol Res 7:267–278PubMedCrossRefGoogle Scholar
  22. 22.
    Schroder R, Feisel KD, Ernestus RI (2002) Ki-67 labeling is correlated with the time to recurrence in primary glioblastomas. J Neurooncol 56:127–132PubMedCrossRefGoogle Scholar
  23. 23.
    Lin J, Teo S, Lam DH, Jeyaseelan K, Wang S (2012) MicroRNA-10b pleiotropically regulates invasion, angiogenicity and apoptosis of tumor cells resembling mesenchymal subtype of glioblastoma multiforme. Cell Death Dis 3:e398PubMedCrossRefGoogle Scholar
  24. 24.
    Dong CG, Wu WK, Feng SY, Wang XJ, Shao JF, Qiao J (2012) Co-inhibition of microRNA-10b and microRNA-21 exerts synergistic inhibition on the proliferation and invasion of human glioma cells. Int J Oncol 41:1005–1012PubMedGoogle Scholar
  25. 25.
    Gabriely G, Teplyuk NM, Krichevsky AM (2011) Context effect: microRNA-10b in cancer cell proliferation, spread and death. Autophagy 7:1384–1386PubMedCrossRefGoogle Scholar
  26. 26.
    Gabriely G, Yi M, Narayan RS, Niers JM, Wurdinger T, Imitola J, Ligon KL, Kesari S, Esau C, Stephens RM, Tannous BA, Krichevsky AM (2011) Human glioma growth is controlled by microRNA-10b. Cancer Res 71:3563–3572PubMedCrossRefGoogle Scholar
  27. 27.
    Costa PM, Cardoso AL, Nobrega C, Pereira de Almeida LF, Bruce JN, Canoll P, Pedroso de Lima MC (2013) MicroRNA-21 silencing enhances the cytotoxic effect of the antiangiogenic drug sunitinib in glioblastoma. Hum Mol Genet 22(5):904–918PubMedCrossRefGoogle Scholar
  28. 28.
    Costa PM, Cardoso AL, Pereira de Almeida LF, Bruce JN, Canoll P, Pedroso de Lima MC (2012) PDGF-B-mediated downregulation of miR-21: new insights into PDGF signaling in glioblastoma. Hum Mol Genet 21:5118–5130PubMedCrossRefGoogle Scholar
  29. 29.
    Quintavalle C, Donnarumma E, Iaboni M, Roscigno G, Garofalo M, Romano G, Fiore D, De Marinis P, Croce CM, Condorelli G (2012) Effect of miR-21 and miR-30b/c on TRAIL-induced apoptosis in glioma cells. Oncogene. doi: 10.1038/onc.2012.410
  30. 30.
    Ilhan-Mutlu A, Wagner L, Wohrer A, Furtner J, Widhalm G, Marosi C, Preusser M (2012) Plasma microRNA-21 concentration may be a useful biomarker in glioblastoma patients. Cancer Invest 30:615–621PubMedCrossRefGoogle Scholar
  31. 31.
    Wang Q, Li P, Li A, Jiang W, Wang H, Wang J, Xie K (2012) Plasma specific miRNAs as predictive biomarkers for diagnosis and prognosis of glioma. J Exp Clin Cancer Res 31:97PubMedCrossRefGoogle Scholar
  32. 32.
    Wong ST, Zhang XQ, Zhuang JT, Chan HL, Li CH, Leung GK (2012) MicroRNA-21 inhibition enhances in vitro chemosensitivity of temozolomide-resistant glioblastoma cells. Anticancer Res 32:2835–2841PubMedGoogle Scholar
  33. 33.
    Wang YY, Sun G, Luo H, Wang XF, Lan FM, Yue X, Fu LS, Pu PY, Kang CS, Liu N, You YP (2012) MiR-21 modulates hTERT through a STAT3-dependent manner on glioblastoma cell growth. CNS Neurosci Ther 18:722–728PubMedCrossRefGoogle Scholar
  34. 34.
    Zhang S, Wan Y, Pan T, Gu X, Qian C, Sun G, Sun L, Xiang Y, Wang Z, Shi L (2012) MicroRNA-21 inhibitor sensitizes human glioblastoma U251 stem cells to chemotherapeutic drug temozolomide. J Mol Neurosci 47:346–356PubMedCrossRefGoogle Scholar
  35. 35.
    Gaur AB, Holbeck SL, Colburn NH, Israel MA (2011) Downregulation of Pdcd4 by mir-21 facilitates glioblastoma proliferation in vivo. Neuro Oncol 13:580–590PubMedCrossRefGoogle Scholar
  36. 36.
    Li Y, Zhao S, Zhen Y, Li Q, Teng L, Asai A, Kawamoto K (2011) A miR-21 inhibitor enhances apoptosis and reduces G(2)-M accumulation induced by ionizing radiation in human glioblastoma U251 cells. Brain Tumor Pathol 28:209–214PubMedCrossRefGoogle Scholar
  37. 37.
    Schramedei K, Morbt N, Pfeifer G, Lauter J, Rosolowski M, Tomm JM, von Bergen M, Horn F, Brocke-Heidrich K (2011) MicroRNA-21 targets tumor suppressor genes ANP32A and SMARCA4. Oncogene 30:2975–2985PubMedCrossRefGoogle Scholar
  38. 38.
    Ren Y, Zhou X, Mei M, Yuan XB, Han L, Wang GX, Jia ZF, Xu P, Pu PY, Kang CS (2010) MicroRNA-21 inhibitor sensitizes human glioblastoma cells U251 (PTEN-mutant) and LN229 (PTEN-wild type) to taxol. BMC Cancer 10:27PubMedCrossRefGoogle Scholar
  39. 39.
    Zhou X, Ren Y, Moore L, Mei M, You Y, Xu P, Wang B, Wang G, Jia Z, Pu P, Zhang W, Kang C (2010) Downregulation of miR-21 inhibits EGFR pathway and suppresses the growth of human glioblastoma cells independent of PTEN status. Lab Invest 90:144–155PubMedCrossRefGoogle Scholar
  40. 40.
    Chen Y, Liu W, Chao T, Zhang Y, Yan X, Gong Y, Qiang B, Yuan J, Sun M, Peng X (2008) MicroRNA-21 down-regulates the expression of tumor suppressor PDCD4 in human glioblastoma cell T98G. Cancer Lett 272:197–205PubMedCrossRefGoogle Scholar
  41. 41.
    Papagiannakopoulos T, Shapiro A, Kosik KS (2008) MicroRNA-21 targets a network of key tumor-suppressive pathways in glioblastoma cells. Cancer Res 68:8164–8172PubMedCrossRefGoogle Scholar
  42. 42.
    Corsten MF, Miranda R, Kasmieh R, Krichevsky AM, Weissleder R, Shah K (2007) MicroRNA-21 knockdown disrupts glioma growth in vivo and displays synergistic cytotoxicity with neural precursor cell delivered S-TRAIL in human gliomas. Cancer Res 67:8994–9000PubMedCrossRefGoogle Scholar
  43. 43.
    Chan JA, Krichevsky AM, Kosik KS (2005) MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res 65:6029–6033PubMedCrossRefGoogle Scholar
  44. 44.
    Zhang QQ, Xu H, Huang MB, Ma LM, Huang QJ, Yao Q, Zhou H, Qu LH (2012) MicroRNA-195 plays a tumor-suppressor role in human glioblastoma cells by targeting signaling pathways involved in cellular proliferation and invasion. Neuro Oncol 14:278–287PubMedCrossRefGoogle Scholar
  45. 45.
    Hao J, Zhang C, Zhang A, Wang K, Jia Z, Wang G, Han L, Kang C, Pu P (2012) MiR-221/222 is the regulator of Cx43 expression in human glioblastoma cells. Oncol Rep 27:1504–1510PubMedGoogle Scholar
  46. 46.
    Srinivasan S, Patric IR, Somasundaram K (2011) A ten-microRNA expression signature predicts survival in glioblastoma. PLoS One 6:e17438PubMedCrossRefGoogle Scholar
  47. 47.
    Galardi S, Mercatelli N, Farace MG, Ciafre SA (2011) NF-kB and c-Jun induce the expression of the oncogenic miR-221 and miR-222 in prostate carcinoma and glioblastoma cells. Nucleic Acids Res 39:3892–3902PubMedCrossRefGoogle Scholar
  48. 48.
    Wang X, Han L, Zhang A, Wang G, Jia Z, Yang Y, Yue X, Pu P, Shen C, Kang C (2011) Adenovirus-mediated shRNAs for co-repression of miR-221 and miR-222 expression and function in glioblastoma cells. Oncol Rep 25:97–105PubMedGoogle Scholar
  49. 49.
    Zhang CZ, Zhang JX, Zhang AL, Shi ZD, Han L, Jia ZF, Yang WD, Wang GX, Jiang T, You YP, Pu PY, Cheng JQ, Kang CS (2010) Mir-221 and miR-222 target PUMA to induce cell survival in glioblastoma. Mol Cancer 9:229PubMedCrossRefGoogle Scholar
  50. 50.
    Zhang C, Kang C, You Y, Pu P, Yang W, Zhao P, Wang G, Zhang A, Jia Z, Han L, Jiang H (2009) Co-suppression of miR-221/222 cluster suppresses human glioma cell growth by targeting p27kip1 in vitro and in vivo. Int J Oncol 34:1653–1660PubMedCrossRefGoogle Scholar
  51. 51.
    Gillies JK, Lorimer IA (2007) Regulation of p27Kip1 by miRNA 221/222 in glioblastoma. Cell Cycle 6:2005–2009PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Aysegül Ilhan-Mutlu
    • 1
    • 5
  • Adelheid Wöhrer
    • 2
    • 5
  • Anna Sophie Berghoff
    • 2
    • 5
  • Georg Widhalm
    • 3
    • 5
  • Christine Marosi
    • 1
    • 5
  • Ludwig Wagner
    • 4
    • 5
  • Matthias Preusser
    • 1
    • 5
    Email author
  1. 1.Department of Medicine I/OncologyMedical University of ViennaViennaAustria
  2. 2.Institute for Neurology, Medical University of ViennaViennaAustria
  3. 3.Department of NeurosurgeryMedical University of ViennaViennaAustria
  4. 4.Department of NephrologyMedical University of ViennaViennaAustria
  5. 5.Comprehensive Cancer Center Vienna, Central Nervous System Tumours UnitMedical University of ViennaViennaAustria

Personalised recommendations