Journal of Neuro-Oncology

, Volume 108, Issue 1, pp 29–35

An experimental xenograft mouse model of diffuse pontine glioma designed for therapeutic testing

  • Yasuyuki Aoki
  • Rintaro Hashizume
  • Tomoko Ozawa
  • Anu Banerjee
  • Michael Prados
  • C. David James
  • Nalin Gupta
Laboratory Investigation


The prognosis for diffuse infiltrating pontine gliomas (DIPG) remains extremely poor, with the majority of patients surviving less than 2 years. Here, we have adapted standard xenograft techniques to study glioma growth in the mouse brainstem, and have utilized the mouse model for studying a relevant therapeutic for treating DIPGs. bioluminescence imaging monitoring revealed a progressive increase in signal following the injection of either of two tumor cell types into the brainstem. Mice with orthotopic GS2 tumors, and receiving a single 100 mg/kg dose of temozolomide showed a lengthy period of decreased tumor luminescence, with substantially increased survival relative to untreated mice (P < 0.001). A small molecule inhibitor that targets cdk4/6 was used to test AM-38 brainstem xenograft response to treatment. Drug treatment resulted in delayed tumor growth, and significantly extended survival. Our results demonstrate the feasibility of using an orthotopic brainstem tumor model in athymic mice, and for application to testing therapeutic agents in treating DIPG.


Brainstem glioma Mouse model Bioluminescence image 


  1. 1.
    Sethi R, Allen J, Donahue B, Karajannis M, Gardner S, Wisoff J, Kunnakkat S, Mathew J, Zagzag D, Newman K, Narayana A (2011) Prospective neuraxis MRI surveillance reveals a high risk of leptomeningeal dissemination in diffuse intrinsic pontine glioma. J Neurooncol 102(1):121–127. doi:10.1007/s11060-010-0301-y PubMedCrossRefGoogle Scholar
  2. 2.
    Becher OJ, Hambardzumyan D, Walker TR, Helmy K, Nazarian J, Albrecht S, Hiner RL, Gall S, Huse JT, Jabado N, MacDonald TJ, Holland EC (2010) Preclinical evaluation of radiation and perifosine in a genetically and histologically accurate model of brainstem glioma. Cancer Res 70(6):2548–2557. doi:10.1158/0008-5472.CAN-09-2503 PubMedCrossRefGoogle Scholar
  3. 3.
    Claes A, Gambarota G, Hamans B, van Tellingen O, Wesseling P, Maass C, Heerschap A, Leenders W (2008) Magnetic resonance imaging-based detection of glial brain tumors in mice after antiangiogenic treatment. Int J Cancer 122(9):1981–1986. doi:10.1002/ijc.23306 PubMedCrossRefGoogle Scholar
  4. 4.
    Hargrave D, Bartels U, Bouffet E (2006) Diffuse brainstem glioma in children: critical review of clinical trials. Lancet Oncol 7(3):241–248. doi:10.1016/S1470-2045(06)70615-5 PubMedCrossRefGoogle Scholar
  5. 5.
    Masui K, Suzuki SO, Torisu R, Goldman JE, Canoll P, Iwaki T (2010) Glial progenitors in the brainstem give rise to malignant gliomas by platelet-derived growth factor stimulation. Glia 58(9):1050–1065. doi:10.1002/glia.20986 PubMedCrossRefGoogle Scholar
  6. 6.
    Dinca EB, Sarkaria JN, Schroeder MA, Carlson BL, Voicu R, Gupta N, Berger MS, James CD (2007) Bioluminescence monitoring of intracranial glioblastoma xenograft: response to primary and salvage temozolomide therapy. J Neurosurg 107(3):610–616. doi:10.3171/JNS-07/09/0610 PubMedCrossRefGoogle Scholar
  7. 7.
    Finlay JL, Zacharoulis S (2005) The treatment of high grade gliomas and diffuse intrinsic pontine tumors of childhood and adolescence: a historical - and futuristic - perspective. J Neurooncol 75(3):253–266. doi:10.1007/s11060-005-6747-7 PubMedCrossRefGoogle Scholar
  8. 8.
    Hashizume R, Ozawa T, Gryaznov SM, Bollen AW, Lamborn KR, Frey WH 2nd, Deen DF (2008) New therapeutic approach for brain tumors: Intranasal delivery of telomerase inhibitor GRN163. Neuro Oncol 10(2):112–120. doi:10.1215/15228517-2007-052 PubMedCrossRefGoogle Scholar
  9. 9.
    Huynh GH, Deen DF, Szoka FC Jr (2006) Barriers to carrier mediated drug and gene delivery to brain tumors. J Control Release 110(2):236–259. doi:10.1016/j.jconrel.2005.09.053 PubMedCrossRefGoogle Scholar
  10. 10.
    Thorne RG, Pronk GJ, Padmanabhan V, Frey WH 2nd (2004) Delivery of insulin-like growth factor-I to the rat brain and spinal cord along olfactory and trigeminal pathways following intranasal administration. Neuroscience 127(2):481–496. doi:10.1016/j.neuroscience.2004.05.029 PubMedCrossRefGoogle Scholar
  11. 11.
    Hashizume R, Ozawa T, Dinca EB, Banerjee A, Prados MD, James CD, Gupta N (2010) A human brainstem glioma xenograft model enabled for bioluminescence imaging. J Neurooncol 96(2):151–159. doi:10.1007/s11060-009-9954-9 PubMedCrossRefGoogle Scholar
  12. 12.
    Michaud K, Solomon DA, Oermann E, Kim JS, Zhong WZ, Prados MD, Ozawa T, James CD, Waldman T (2010) Pharmacologic inhibition of cyclin-dependent kinases 4 and 6 arrests the growth of glioblastoma multiforme intracranial xenografts. Cancer Res 70(8):3228–3238. doi:10.1158/0008-5472.CAN-09-4559 PubMedCrossRefGoogle Scholar
  13. 13.
    Ozawa T, James CD (2010) Establishing intracranial brain tumor xenografts with subsequent analysis of tumor growth and response to therapy using bioluminescence imaging. J Vis Exp (41). doi: 10.3791/1986
  14. 14.
    Edinger M, Cao YA, Hornig YS, Jenkins DE, Verneris MR, Bachmann MH, Negrin RS, Contag CH (2002) Advancing animal models of neoplasia through in vivo bioluminescence imaging. Eur J Cancer 38(16):2128–2136. doi:10.1016/S0959-8049(02)00410-0 PubMedCrossRefGoogle Scholar
  15. 15.
    Prasad G, Sottero T, Yang X, Mueller S, James CD, Weiss WA, Polley MY, Ozawa T, Berger MS, Aftab DT, Prados MD, Haas-Kogan DA (2011) Inhibition of PI3K/mTOR pathways in glioblastoma and implications for combination therapy with temozolomide. Neuro Oncol 13(4):384–392. doi:10.1093/neuonc/noq193 PubMedCrossRefGoogle Scholar
  16. 16.
    Dinse GE, Lagakos SW (1982) Nonparametric estimation of lifetime and disease onset distributions from incomplete observations. Biometrics 38(4):921–932PubMedCrossRefGoogle Scholar
  17. 17.
    Peto RPJ (1972) Asymptotically efficient rank invariant procedures. J R Stat Soc Ser A Stat Soc 135:185–207Google Scholar
  18. 18.
    Malumbres M, Barbacid M (2009) Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer 9(3):153–166. doi:10.1038/nrc2602 PubMedCrossRefGoogle Scholar
  19. 19.
    de Tayrac M, Etcheverry A, Aubry M, Saikali S, Hamlat A, Quillien V, Le Treut A, Galibert MD, Mosser J (2009) Integrative genome-wide analysis reveals a robust genomic glioblastoma signature associated with copy number driving changes in gene expression. Genes Chromosom Cancer 48(1):55–68. doi:10.1002/gcc.20618 PubMedCrossRefGoogle Scholar
  20. 20.
    Fry DW, Harvey PJ, Keller PR, Elliott WL, Meade M, Trachet E, Albassam M, Zheng X, Leopold WR, Pryer NK, Toogood PL (2004) Specific inhibition of cyclin-dependent kinase 4/6 by PD 0332991 and associated antitumor activity in human tumor xenografts. Mol Cancer Ther 3(11):1427–1438PubMedGoogle Scholar
  21. 21.
    Parsons DW, Jones S, Zhang X, Lin JC, Leary RJ, Angenendt P, Mankoo P, Carter H, Siu IM, Gallia GL, Olivi A, McLendon R, Rasheed BA, Keir S, Nikolskaya T, Nikolsky Y, Busam DA, Tekleab H, Diaz LA Jr, Hartigan J, Smith DR, Strausberg RL, Marie SK, Shinjo SM, Yan H, Riggins GJ, Bigner DD, Karchin R, Papadopoulos N, Parmigiani G, Vogelstein B, Velculescu VE, Kinzler KW (2008) An integrated genomic analysis of human glioblastoma multiforme. Science 321(5897):1807–1812. doi:10.1126/science.1164382 PubMedCrossRefGoogle Scholar
  22. 22.
    Jallo GI, Penno M, Sukay L, Liu JY, Tyler B, Lee J, Carson BS, Guarnieri M (2005) Experimental models of brainstem tumors: development of a neonatal rat model. Child’s Nervous System 21(5):399–403. doi:10.1007/s00381-004-1100-6 PubMedCrossRefGoogle Scholar
  23. 23.
    Lee J, Jallo GI, Guarnieri M, Carson BS Sr, Penno MB (2005) A novel brainstem tumor model: guide screw technology with functional, radiological, and histopathological characterization. Neurosurg Focus 18 (6A):E11Google Scholar
  24. 24.
    Liu Q, Liu R, Kashyap MV, Agarwal R, Shi X, Wang CC, Yang SH (2008) Brainstem glioma progression in juvenile and adult rats. J Neurosurg 109(5):849–855. doi:10.3171/JNS/2008/109/11/0849 PubMedCrossRefGoogle Scholar
  25. 25.
    Siu IM, Tyler BM, Chen JX, Eberhart CG, Thomale UW, Olivi A, Jallo GI, Riggins GJ, Gallia GL (2010) Establishment of a human glioblastoma stemlike brainstem rodent tumor model. J Neurosurg Pediatr 6(1):92–97. doi:10.3171/2010.3.PEDS09366 PubMedCrossRefGoogle Scholar
  26. 26.
    Caretti V, Zondervan I, Meijer DH, Idema S, Vos W, Hamans B, Bugiani M, Hulleman E, Wesseling P, Vandertop WP, Noske DP, Kaspers G, Molthoff CF, Wurdinger T (2010) Monitoring of tumor growth and post-irradiation recurrence in a diffuse intrinsic pontine glioma mouse model. Brain Pathol. doi:10.1111/j.1750-3639.2010.00468.x PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2012

Authors and Affiliations

  • Yasuyuki Aoki
    • 1
  • Rintaro Hashizume
    • 1
  • Tomoko Ozawa
    • 1
  • Anu Banerjee
    • 2
  • Michael Prados
    • 1
  • C. David James
    • 1
  • Nalin Gupta
    • 1
    • 2
  1. 1.Department of Neurological Surgery and Brain Tumor Research CenterUniversity of California San FranciscoSan FranciscoUSA
  2. 2.Department of PediatricsUniversity of California San FranciscoSan FranciscoUSA

Personalised recommendations