Journal of Neuro-Oncology

, Volume 107, Issue 3, pp 487–501 | Cite as

Induction of cell-cycle arrest and apoptosis in glioblastoma stem-like cells by WP1193, a novel small molecule inhibitor of the JAK2/STAT3 pathway

  • Ke Sai
  • Shuzhen Wang
  • Veerakumar Balasubramaniyan
  • Charles Conrad
  • Frederick F. Lang
  • Kenneth Aldape
  • Slawomir Szymanski
  • Izabela Fokt
  • Atreyi Dasgupta
  • Timothy Madden
  • Su Guan
  • Zhongping Chen
  • W. K. Alfred Yung
  • Waldemar Priebe
  • Howard ColmanEmail author
Laboratory Investigation


Glioma stem-like cells (GSCs) may be the initiating cells in glioblastoma (GBM) and contribute to the resistance of these tumors to conventional therapies. Development of novel chemotherapeutic agents and treatment approaches against GBM, especially those specifically targeting GSCs are thus necessary. In the present study, we found that a novel Janus kinase 2/Signal Transducer and Activator of Transcription 3 (JAK2/STAT3) pathway inhibitor (WP1193) significantly decreased the proliferation of established glioma cell lines in vitro and inhibit the growth of glioma in vivo. To test the efficacy of WP1193 against GSCs, we then administrated WP1193 to GSCs isolated and expanded from multiple human GBM tumors. We revealed that WP1193 suppressed phosphorylation of JAK2 and STAT3 with high potency and demonstrated a dose-dependent inhibition of proliferation and neurosphere formation of GSCs. These effects were at least due in part to G1 arrest associated with down-regulation of cyclin D1 and up-regulation of p21 Cip1/Waf-1 . Furthermore, WP1193 exposure decreased expression of stem cell markers including CD133 and c-myc, and induced cell death in GSCs through apoptosis. Taken together, our data indicate that WP1193 is a potent small molecule inhibitor of the JAK2/STAT3 pathway that shows promise as a therapeutic agent against GBM by targeting GSCs.


Glioblastoma STAT3 Stem-like cell Targeted therapy Apoptosis 



This work was supported by a grant from the CERN Foundation (to H.C. and W.P.) and from Moleculin, LLC (to W.P.).

Conflict of interest

Dr. Waldemar Priebe is the lead inventor in the patent disclosing WP1193 and related analogs, and has a financial interest Moleculin, LLC, the company that licensed this patent. Timothy Madden and Charles Conrad are listed as inventors on the patent disclosing WP1193 and related analogs, and have a financial interest Moleculin, LLC, the company that licensed this patent.


  1. 1.
    Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, Curschmann J, Janzer RC, Ludwin SK, Gorlia T, Allgeier A, Lacombe D, Cairncross JG, Eisenhauer E, Mirimanoff RO (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996PubMedCrossRefGoogle Scholar
  2. 2.
    Wang JC, Dick JE (2005) Cancer stem cells: lessons from leukemia. Trends Cell Biol 15:494–501PubMedCrossRefGoogle Scholar
  3. 3.
    Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J, Minden M, Paterson B, Caligiuri MA, Dick JE (1994) A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367:645–648PubMedCrossRefGoogle Scholar
  4. 4.
    Clarke MF, Dick JE, Dirks PB, Eaves CJ, Jamieson CH, Jones DL, Visvader J, Weissman IL, Wahl GM (2006) Cancer stem cells–perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Res 66:9339–9344PubMedCrossRefGoogle Scholar
  5. 5.
    Galli R, Binda E, Orfanelli U, Cipelletti B, Gritti A, De Vitis S, Fiocco R, Foroni C, Dimeco F, Vescovi A (2004) Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res 64:7011–7021PubMedCrossRefGoogle Scholar
  6. 6.
    Lee J, Kotliarova S, Kotliarov Y, Li A, Su Q, Donin NM, Pastorino S, Purow BW, Christopher N, Zhang W, Park JK, Fine HA (2006) Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. Cancer Cell 9:391–403PubMedCrossRefGoogle Scholar
  7. 7.
    Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, Dirks PB (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res 63:5821–5828PubMedGoogle Scholar
  8. 8.
    Sulman E, Aldape K, Colman H (2008) Brain tumor stem cells. Curr Probl Cancer 32:124–142PubMedCrossRefGoogle Scholar
  9. 9.
    Yuan X, Curtin J, Xiong Y, Liu G, Waschsmann-Hogiu S, Farkas DL, Black KL, Yu JS (2004) Isolation of cancer stem cells from adult glioblastoma multiforme. Oncogene 23:9392–9400PubMedCrossRefGoogle Scholar
  10. 10.
    Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB, Dewhirst MW, Bigner DD, Rich JN (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444:756–760PubMedCrossRefGoogle Scholar
  11. 11.
    Liu G, Yuan X, Zeng Z, Tunici P, Ng H, Abdulkadir IR, Lu L, Irvin D, Black KL, Yu JS (2006) Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma. Mol Cancer 5:67PubMedCrossRefGoogle Scholar
  12. 12.
    Eyler CE, Rich JN (2008) Survival of the fittest: cancer stem cells in therapeutic resistance and angiogenesis. J Clin Oncol 26:2839–2845. doi: 10.1200/JCO.2007.15.1829 PubMedCrossRefGoogle Scholar
  13. 13.
    Martin V, Xu J, Pabbisetty SK, Alonso MM, Liu D, Lee OH, Gumin J, Bhat KP, Colman H, Lang FF, Fueyo J, Gomez-Manzano C (2009) Tie2-mediated multidrug resistance in malignant gliomas is associated with upregulation of ABC transporters. Oncogene 28:2358–2363. doi: 10.1038/onc.2009.103 PubMedCrossRefGoogle Scholar
  14. 14.
    Darnell JE Jr (1997) STATs and gene regulation. Science 277:1630–1635PubMedCrossRefGoogle Scholar
  15. 15.
    Levy DE, Darnell JE Jr (2002) Stats: transcriptional control and biological impact. Nat Rev Mol Cell Biol 3:651–662PubMedCrossRefGoogle Scholar
  16. 16.
    Bromberg J, Darnell JE Jr (2000) The role of STATs in transcriptional control and their impact on cellular function. Oncogene 19:2468–2473PubMedCrossRefGoogle Scholar
  17. 17.
    Sano S, Chan KS, Kira M, Kataoka K, Takagi S, Tarutani M, Itami S, Kiguchi K, Yokoi M, Sugasawa K, Mori T, Hanaoka F, Takeda J, DiGiovanni J (2005) Signal transducer and activator of transcription 3 is a key regulator of keratinocyte survival and proliferation following UV irradiation. Cancer Res 65:5720–5729PubMedCrossRefGoogle Scholar
  18. 18.
    Minegishi Y, Saito M, Tsuchiya S, Tsuge I, Takada H, Hara T, Kawamura N, Ariga T, Pasic S, Stojkovic O, Metin A, Karasuyama H (2007) Dominant-negative mutations in the DNA-binding domain of STAT3 cause hyper-IgE syndrome. Nature 448:1058–1062PubMedCrossRefGoogle Scholar
  19. 19.
    Rajasingh J, Bord E, Hamada H, Lambers E, Qin G, Losordo DW, Kishore R (2007) STAT3-dependent mouse embryonic stem cell differentiation into cardiomyocytes: analysis of molecular signaling and therapeutic efficacy of cardiomyocyte precommitted mES transplantation in a mouse model of myocardial infarction. Circ Res 101:910–918PubMedCrossRefGoogle Scholar
  20. 20.
    Takeda K, Noguchi K, Shi W, Tanaka T, Matsumoto M, Yoshida N, Kishimoto T, Akira S (1997) Targeted disruption of the mouse Stat3 gene leads to early embryonic lethality. Proc Natl Acad Sci U S A 94:3801–3804PubMedCrossRefGoogle Scholar
  21. 21.
    Yoshimatsu T, Kawaguchi D, Oishi K, Takeda K, Akira S, Masuyama N, Gotoh Y (2006) Non-cell-autonomous action of STAT3 in maintenance of neural precursor cells in the mouse neocortex. Development 133:2553–2563PubMedCrossRefGoogle Scholar
  22. 22.
    Bowman T, Broome MA, Sinibaldi D, Wharton W, Pledger WJ, Sedivy JM, Irby R, Yeatman T, Courtneidge SA, Jove R (2001) Stat3-mediated Myc expression is required for Src transformation and PDGF-induced mitogenesis. Proc Natl Acad Sci USA 98:7319–7324PubMedCrossRefGoogle Scholar
  23. 23.
    Bromberg J (2002) Stat proteins and oncogenesis. J Clin Invest 109:1139–1142PubMedGoogle Scholar
  24. 24.
    Garcia R, Bowman TL, Niu G, Yu H, Minton S, Muro-Cacho CA, Cox CE, Falcone R, Fairclough R, Parsons S, Laudano A, Gazit A, Levitzki A, Kraker A, Jove R (2001) Constitutive activation of Stat3 by the Src and JAK tyrosine kinases participates in growth regulation of human breast carcinoma cells. Oncogene 20:2499–2513PubMedCrossRefGoogle Scholar
  25. 25.
    Cortas T, Eisenberg R, Fu P, Kern J, Patrick L, Dowlati A (2007) Activation state EGFR and STAT-3 as prognostic markers in resected non-small cell lung cancer. Lung Cancer 55:349–355PubMedCrossRefGoogle Scholar
  26. 26.
    Niu G, Bowman T, Huang M, Shivers S, Reintgen D, Daud A, Chang A, Kraker A, Jove R, Yu H (2002) Roles of activated Src and Stat3 signaling in melanoma tumor cell growth. Oncogene 21:7001–7010PubMedCrossRefGoogle Scholar
  27. 27.
    Xia Z, Baer MR, Block AW, Baumann H, Wetzler M (1998) Expression of signal transducers and activators of transcription proteins in acute myeloid leukemia blasts. Cancer Res 58:3173–3180PubMedGoogle Scholar
  28. 28.
    Rahaman SO, Harbor PC, Chernova O, Barnett GH, Vogelbaum MA, Haque SJ (2002) Inhibition of constitutively active Stat3 suppresses proliferation and induces apoptosis in glioblastoma multiforme cells. Oncogene 21:8404–8413PubMedCrossRefGoogle Scholar
  29. 29.
    Carro MS, Lim WK, Alvarez MJ, Bollo RJ, Zhao X, Snyder EY, Sulman EP, Anne SL, Doetsch F, Colman H, Lasorella A, Aldape K, Califano A, Iavarone A (2010) The transcriptional network for mesenchymal transformation of brain tumours. Nature 463:318–325PubMedCrossRefGoogle Scholar
  30. 30.
    Zhou J, Wulfkuhle J, Zhang H, Gu P, Yang Y, Deng J, Margolick JB, Liotta LA, Petricoin E 3rd, Zhang Y (2007) Activation of the PTEN/mTOR/STAT3 pathway in breast cancer stem-like cells is required for viability and maintenance. Proc Natl Acad Sci USA 104:16158–16163PubMedCrossRefGoogle Scholar
  31. 31.
    Sherry MM, Reeves A, Wu JK, Cochran BH (2009) STAT3 is required for proliferation and maintenance of multipotency in glioblastoma stem cells. Stem Cells 27:2383–2392PubMedCrossRefGoogle Scholar
  32. 32.
    Dasgupta A, Raychaudhuri B, Haqqi T, Prayson R, Van Meir EG, Vogelbaum M, Haque SJ (2009) Stat3 activation is required for the growth of U87 cell-derived tumours in mice. Eur J Cancer 45:677–684. doi: 10.1016/j.ejca.2008.11.027 PubMedCrossRefGoogle Scholar
  33. 33.
    Mora LB, Buettner R, Seigne J, Diaz J, Ahmad N, Garcia R, Bowman T, Falcone R, Fairclough R, Cantor A, Muro-Cacho C, Livingston S, Karras J, Pow-Sang J, Jove R (2002) Constitutive activation of Stat3 in human prostate tumors and cell lines: direct inhibition of Stat3 signaling induces apoptosis of prostate cancer cells. Cancer Res 62:6659–6666PubMedGoogle Scholar
  34. 34.
    Meydan N, Grunberger T, Dadi H, Shahar M, Arpaia E, Lapidot Z, Leeder JS, Freedman M, Cohen A, Gazit A, Levitzki A, Roifman CM (1996) Inhibition of acute lymphoblastic leukaemia by a Jak-2 inhibitor. Nature 379:645–648PubMedCrossRefGoogle Scholar
  35. 35.
    Shao H, Cheng HY, Cook RG, Tweardy DJ (2003) Identification and characterization of signal transducer and activator of transcription 3 recruitment sites within the epidermal growth factor receptor. Cancer Res 63:3923–3930PubMedGoogle Scholar
  36. 36.
    Kong LY, Gelbard A, Wei J, Reina-Ortiz C, Wang Y, Yang EC, Hailemichael Y, Fokt I, Jayakumar A, Qiao W, Fuller GN, Overwijk WW, Priebe W, Heimberger AB (2010) Inhibition of p-STAT3 enhances IFN-alpha efficacy against metastatic melanoma in a murine model. Clin Cancer Res 16:2550–2561. doi: 10.1158/1078-0432.CCR-10-0279 PubMedCrossRefGoogle Scholar
  37. 37.
    Jiang H, Gomez-Manzano C, Aoki H, Alonso MM, Kondo S, McCormick F, Xu J, Kondo Y, Bekele BN, Colman H, Lang FF, Fueyo J (2007) Examination of the therapeutic potential of Delta-24-RGD in brain tumor stem cells: role of autophagic cell death. J Natl Cancer Inst 99:1410–1414PubMedCrossRefGoogle Scholar
  38. 38.
    Wei J, Barr J, Kong LY, Wang Y, Wu A, Sharma AK, Gumin J, Henry V, Colman H, Sawaya R, Lang FF, Heimberger AB (2010) Glioma-associated cancer-initiating cells induce immunosuppression. Clin Cancer Res 16:461–473. doi: 10.1158/1078-0432.CCR-09-1983 PubMedCrossRefGoogle Scholar
  39. 39.
    Gottlieb RA, Granville DJ (2002) Analyzing mitochondrial changes during apoptosis. Methods 26:341–347PubMedCrossRefGoogle Scholar
  40. 40.
    Attia MA, Weiss DW (1966) Immunology of spontaneous mammary carcinomas in mice. V. Acquired tumor resistance and enhancement in strain A mice infected with mammary tumor virus. Cancer Res 26:1787–1800PubMedGoogle Scholar
  41. 41.
    Lal S, Lacroix M, Tofilon P, Fuller GN, Sawaya R, Lang FF (2000) An implantable guide-screw system for brain tumor studies in small animals. J Neurosurg 92:326–333PubMedCrossRefGoogle Scholar
  42. 42.
    Reynolds BA, Weiss S (1996) Clonal and population analyses demonstrate that an EGF-responsive mammalian embryonic CNS precursor is a stem cell. Dev Biol 175:1–13PubMedCrossRefGoogle Scholar
  43. 43.
    Tropepe V, Coles BL, Chiasson BJ, Horsford DJ, Elia AJ, McInnes RR, van der Kooy D (2000) Retinal stem cells in the adult mammalian eye. Science 287:2032–2036PubMedCrossRefGoogle Scholar
  44. 44.
    Toma JG, Akhavan M, Fernandes KJ, Barnabe-Heider F, Sadikot A, Kaplan DR, Miller FD (2001) Isolation of multipotent adult stem cells from the dermis of mammalian skin. Nat Cell Biol 3:778–784PubMedCrossRefGoogle Scholar
  45. 45.
    Fang JY, Richardson BC (2005) The MAPK signalling pathways and colorectal cancer. Lancet Oncol 6:322–327. doi: 10.1016/S1470-2045(05)70168-6 PubMedCrossRefGoogle Scholar
  46. 46.
    Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, Cusimano MD, Dirks PB (2004) Identification of human brain tumour initiating cells. Nature 432:396–401PubMedCrossRefGoogle Scholar
  47. 47.
    Beier D, Hau P, Proescholdt M, Lohmeier A, Wischhusen J, Oefner PJ, Aigner L, Brawanski A, Bogdahn U, Beier CP (2007) CD133(+) and CD133(-) glioblastoma-derived cancer stem cells show differential growth characteristics and molecular profiles. Cancer Res 67:4010–4015PubMedCrossRefGoogle Scholar
  48. 48.
    Bromberg JF, Wrzeszczynska MH, Devgan G, Zhao Y, Pestell RG, Albanese C, Darnell JE Jr (1999) Stat3 as an oncogene. Cell 98:295–303PubMedCrossRefGoogle Scholar
  49. 49.
    Zheng H, Ying H, Yan H, Kimmelman AC, Hiller DJ, Chen AJ, Perry SR, Tonon G, Chu GC, Ding Z, Stommel JM, Dunn KL, Wiedemeyer R, You MJ, Brennan C, Wang YA, Ligon KL, Wong WH, Chin L, DePinho RA (2008) p53 and Pten control neural and glioma stem/progenitor cell renewal and differentiation. Nature 455:1129–1133. doi: 10.1038/nature07443 PubMedCrossRefGoogle Scholar
  50. 50.
    Liu X, Kim CN, Yang J, Jemmerson R, Wang X (1996) Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 86:147–157PubMedCrossRefGoogle Scholar
  51. 51.
    Germain D, Frank DA (2007) Targeting the cytoplasmic and nuclear functions of signal transducers and activators of transcription 3 for cancer therapy. Clin Cancer Res 13:5665–5669PubMedCrossRefGoogle Scholar
  52. 52.
    Abou-Ghazal M, Yang DS, Qiao W, Reina-Ortiz C, Wei J, Kong LY, Fuller GN, Hiraoka N, Priebe W, Sawaya R, Heimberger AB (2008) The incidence, correlation with tumor-infiltrating inflammation, and prognosis of phosphorylated STAT3 expression in human gliomas. Clin Cancer Res 14:8228–8235PubMedCrossRefGoogle Scholar
  53. 53.
    Brantley EC, Benveniste EN (2008) Signal transducer and activator of transcription-3: a molecular hub for signaling pathways in gliomas. Mol Cancer Res 6:675–684PubMedCrossRefGoogle Scholar
  54. 54.
    Mizoguchi M, Betensky RA, Batchelor TT, Bernay DC, Louis DN, Nutt CL (2006) Activation of STAT3, MAPK, and AKT in malignant astrocytic gliomas: correlation with EGFR status, tumor grade, and survival. J Neuropathol Exp Neurol 65:1181–1188. doi: 10.1097/01.jnen.0000248549.14962.b2 PubMedCrossRefGoogle Scholar
  55. 55.
    Schaefer LK, Ren Z, Fuller GN, Schaefer TS (2002) Constitutive activation of Stat3alpha in brain tumors: localization to tumor endothelial cells and activation by the endothelial tyrosine kinase receptor (VEGFR-2). Oncogene 21:2058–2065. doi: 10.1038/sj.onc.1205263 PubMedCrossRefGoogle Scholar
  56. 56.
    Hellsten R, Johansson M, Dahlman A, Dizeyi N, Sterner O, Bjartell A (2008) Galiellalactone is a novel therapeutic candidate against hormone-refractory prostate cancer expressing activated Stat3. Prostate 68:269–280PubMedCrossRefGoogle Scholar
  57. 57.
    Huang FJ, Steeg PS, Price JE, Chiu WT, Chou PC, Xie K, Sawaya R, Huang S (2008) Molecular basis for the critical role of suppressor of cytokine signaling-1 in melanoma brain metastasis. Cancer Res 68:9634–9642PubMedCrossRefGoogle Scholar
  58. 58.
    Chen X, Xu H, Yuan P, Fang F, Huss M, Vega VB, Wong E, Orlov YL, Zhang W, Jiang J, Loh YH, Yeo HC, Yeo ZX, Narang V, Govindarajan KR, Leong B, Shahab A, Ruan Y, Bourque G, Sung WK, Clarke ND, Wei CL, Ng HH (2008) Integration of external signaling pathways with the core transcriptional network in embryonic stem cells. Cell 133:1106–1117PubMedCrossRefGoogle Scholar
  59. 59.
    Androutsellis-Theotokis A, Leker RR, Soldner F, Hoeppner DJ, Ravin R, Poser SW, Rueger MA, Bae SK, Kittappa R, McKay RD (2006) Notch signalling regulates stem cell numbers in vitro and in vivo. Nature 442:823–826PubMedCrossRefGoogle Scholar
  60. 60.
    Fukuda S, Abematsu M, Mori H, Yanagisawa M, Kagawa T, Nakashima K, Yoshimura A, Taga T (2007) Potentiation of astrogliogenesis by STAT3-mediated activation of bone morphogenetic protein-Smad signaling in neural stem cells. Mol Cell Biol 27:4931–4937. doi: 10.1128/MCB.02435-06 PubMedCrossRefGoogle Scholar
  61. 61.
    Cao F, Hata R, Zhu P, Ma YJ, Tanaka J, Hanakawa Y, Hashimoto K, Niinobe M, Yoshikawa K, Sakanaka M (2006) Overexpression of SOCS3 inhibits astrogliogenesis and promotes maintenance of neural stem cells. J Neurochem 98:459–470. doi: 10.1111/j.1471-4159.2006.03890.x PubMedCrossRefGoogle Scholar
  62. 62.
    Lee J, Son MJ, Woolard K, Donin NM, Li A, Cheng CH, Kotliarova S, Kotliarov Y, Walling J, Ahn S, Kim M, Totonchy M, Cusack T, Ene C, Ma H, Su Q, Zenklusen JC, Zhang W, Maric D, Fine HA (2008) Epigenetic-mediated dysfunction of the bone morphogenetic protein pathway inhibits differentiation of glioblastoma-initiating cells. Cancer Cell 13:69–80. doi: 10.1016/j.ccr.2007.12.005 PubMedCrossRefGoogle Scholar
  63. 63.
    Aggarwal BB, Sethi G, Ahn KS, Sandur SK, Pandey MK, Kunnumakkara AB, Sung B, Ichikawa H (2006) Targeting signal-transducer-and-activator-of-transcription-3 for prevention and therapy of cancer: modern target but ancient solution. Ann N Y Acad Sci 1091:151–169. doi: 10.1196/annals.1378.063 PubMedCrossRefGoogle Scholar
  64. 64.
    Kong LY, Wei J, Sharma AK, Barr J, Abou-Ghazal MK, Fokt I, Weinberg J, Rao G, Grimm E, Priebe W, Heimberger AB (2009) A novel phosphorylated STAT3 inhibitor enhances T cell cytotoxicity against melanoma through inhibition of regulatory T cells. Cancer Immunol Immunother 58:1023–1032. doi: 10.1007/s00262-008-0618-y PubMedCrossRefGoogle Scholar
  65. 65.
    Heimberger AB, Priebe W (2008) Small molecular inhibitors of p-STAT3: novel agents for treatment of primary and metastatic CNS cancers. Recent Pat CNS Drug Discov 3:179–188PubMedCrossRefGoogle Scholar
  66. 66.
    Iwamaru A, Szymanski S, Iwado E, Aoki H, Yokoyama T, Fokt I, Hess K, Conrad C, Madden T, Sawaya R, Kondo S, Priebe W, Kondo Y (2007) A novel inhibitor of the STAT3 pathway induces apoptosis in malignant glioma cells both in vitro and in vivo. Oncogene 26:2435–2444PubMedCrossRefGoogle Scholar
  67. 67.
    Ferrajoli A, Faderl S, Van Q, Koch P, Harris D, Liu Z, Hazan-Halevy I, Wang Y, Kantarjian HM, Priebe W, Estrov Z (2007) WP1066 disrupts Janus kinase-2 and induces caspase-dependent apoptosis in acute myelogenous leukemia cells. Cancer Res 67:11291–11299PubMedCrossRefGoogle Scholar
  68. 68.
    Xiong H, Zhang ZG, Tian XQ, Sun DF, Liang QC, Zhang YJ, Lu R, Chen YX, Fang JY (2008) Inhibition of JAK1, 2/STAT3 signaling induces apoptosis, cell cycle arrest, and reduces tumor cell invasion in colorectal cancer cells. Neoplasia 10:287–297PubMedGoogle Scholar
  69. 69.
    Nilsson CL, Dillon R, Devakumar A, Shi SD, Greig M, Rogers JC, Krastins B, Rosenblatt M, Kilmer G, Major M, Kaboord BJ, Sarracino D, Rezai T, Prakash A, Lopez M, Ji Y, Priebe W, Lang FF, Colman H, Conrad CA (2010) Quantitative phosphoproteomic analysis of the STAT3/IL-6/HIF1alpha signaling network: an initial study in GSC11 glioblastoma stem cells. J Proteome Res 9:430–443. doi: 10.1021/pr9007927 PubMedCrossRefGoogle Scholar
  70. 70.
    Ishii Y, Waxman S, Germain D (2008) Tamoxifen stimulates the growth of cyclin D1-overexpressing breast cancer cells by promoting the activation of signal transducer and activator of transcription 3. Cancer Res 68:852–860PubMedCrossRefGoogle Scholar
  71. 71.
    Bellido T, O’Brien CA, Roberson PK, Manolagas SC (1998) Transcriptional activation of the p21(WAF1, CIP1, SDI1) gene by interleukin-6 type cytokines. A prerequisite for their pro-differentiating and anti-apoptotic effects on human osteoblastic cells. J Biol Chem 273:21137–21144PubMedCrossRefGoogle Scholar
  72. 72.
    Hunter T, Pines J (1994) Cyclins and cancer. II: Cyclin D and CDK inhibitors come of age. Cell 79:573–582PubMedCrossRefGoogle Scholar
  73. 73.
    Fukada T, Ohtani T, Yoshida Y, Shirogane T, Nishida K, Nakajima K, Hibi M, Hirano T (1998) STAT3 orchestrates contradictory signals in cytokine-induced G1 to S cell-cycle transition. EMBO J 17:6670–6677PubMedCrossRefGoogle Scholar
  74. 74.
    Hoffman B, Liebermann DA (2008) Apoptotic signaling by c-MYC. Oncogene 27:6462–6472PubMedCrossRefGoogle Scholar
  75. 75.
    Zheng H, Ying H, Yan H, Kimmelman AC, Hiller DJ, Chen AJ, Perry SR, Tonon G, Chu GC, Ding Z, Stommel JM, Dunn KL, Wiedemeyer R, You MJ, Brennan C, Wang YA, Ligon KL, Wong WH, Chin L, dePinho RA (2008) Pten and p53 converge on c-Myc to control differentiation, self-renewal, and transformation of normal and neoplastic stem cells in glioblastoma. Cold Spring Harb Symp Quant Biol 73:427–437. doi: 10.1101/sqb.2008.73.047 PubMedCrossRefGoogle Scholar
  76. 76.
    Roberts PJ, Der CJ (2007) Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene 26:3291–3310. doi: 10.1038/sj.onc.1210422 PubMedCrossRefGoogle Scholar
  77. 77.
    Meloche S, Pouyssegur J (2007) The ERK1/2 mitogen-activated protein kinase pathway as a master regulator of the G1- to S-phase transition. Oncogene 26:3227–3239. doi: 10.1038/sj.onc.1210414 PubMedCrossRefGoogle Scholar
  78. 78.
    Steinbach JP, Weller M (2004) Apoptosis in gliomas: molecular mechanisms and therapeutic implications. J Neurooncol 70:245–254PubMedCrossRefGoogle Scholar
  79. 79.
    Ziegler DS, Kung AL, Kieran MW (2008) Anti-apoptosis mechanisms in malignant gliomas. J Clin Oncol 26:493–500PubMedCrossRefGoogle Scholar
  80. 80.
    Lo HW, Cao X, Zhu H, Ali-Osman F (2008) Constitutively activated STAT3 frequently coexpresses with epidermal growth factor receptor in high-grade gliomas and targeting STAT3 sensitizes them to Iressa and alkylators. Clin Cancer Res 14:6042–6054PubMedCrossRefGoogle Scholar
  81. 81.
    Nielsen M, Kaestel CG, Eriksen KW, Woetmann A, Stokkedal T, Kaltoft K, Geisler C, Ropke C, Odum N (1999) Inhibition of constitutively activated Stat3 correlates with altered Bcl-2/Bax expression and induction of apoptosis in mycosis fungoides tumor cells. Leukemia 13:735–738PubMedCrossRefGoogle Scholar
  82. 82.
    Ahn KS, Sethi G, Sung B, Goel A, Ralhan R, Aggarwal BB (2008) Guggulsterone, a farnesoid X receptor antagonist, inhibits constitutive and inducible STAT3 activation through induction of a protein tyrosine phosphatase SHP-1. Cancer Res 68:4406–4415PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2012

Authors and Affiliations

  • Ke Sai
    • 1
    • 5
  • Shuzhen Wang
    • 1
  • Veerakumar Balasubramaniyan
    • 1
  • Charles Conrad
    • 1
  • Frederick F. Lang
    • 3
  • Kenneth Aldape
    • 2
  • Slawomir Szymanski
    • 4
  • Izabela Fokt
    • 4
  • Atreyi Dasgupta
    • 1
  • Timothy Madden
    • 4
  • Su Guan
    • 1
  • Zhongping Chen
    • 5
  • W. K. Alfred Yung
    • 1
  • Waldemar Priebe
    • 4
  • Howard Colman
    • 1
    • 6
    Email author
  1. 1.Department of Neuro-OncologyUniversity of Texas M.D. Anderson Cancer CenterHoustonUSA
  2. 2.Department of PathologyUniversity of Texas M.D. Anderson Cancer CenterHoustonUSA
  3. 3.Department of NeurosurgeryUniversity of Texas M.D. Anderson Cancer CenterHoustonUSA
  4. 4.Department of Experimental TherapeuticsUniversity of Texas M.D. Anderson Cancer CenterHoustonUSA
  5. 5.Department of Neurosurgery/Neuro-Oncology, State Key Laboratory of Oncology in Southern ChinaSun Yat-Sen University Cancer CenterGuangzhouPeople’s Republic of China
  6. 6.Department of Neurosurgery and Huntsman Cancer InstituteUniversity of UtahSalt Lake CityUSA

Personalised recommendations