Journal of Neuro-Oncology

, Volume 107, Issue 1, pp 197–205

Non-invasive detection of 2-hydroxyglutarate and other metabolites in IDH1 mutant glioma patients using magnetic resonance spectroscopy

  • Whitney B. Pope
  • Robert M. Prins
  • M. Albert Thomas
  • Rajakumar Nagarajan
  • Katharine E. Yen
  • Mark A. Bittinger
  • Noriko Salamon
  • Arthur P. Chou
  • William H. Yong
  • Horacio Soto
  • Neil Wilson
  • Edward Driggers
  • Hyun G. Jang
  • Shinsan M. Su
  • David P. Schenkein
  • Albert Lai
  • Timothy F. Cloughesy
  • Harley I. Kornblum
  • Hong Wu
  • Valeria R. Fantin
  • Linda M. Liau
Clinical Study – Patient Study

Abstract

Mutations of the isocitrate dehydrogenase 1 and 2 genes (IDH1 and IDH2) are commonly found in primary brain cancers. We previously reported that a novel enzymatic activity of these mutations results in the production of the putative oncometabolite, R(−)-2-hydroxyglutarate (2-HG). Here we investigated the ability of magnetic resonance spectroscopy (MRS) to detect 2-HG production in order to non-invasively identify patients with IDH1 mutant brain tumors. Patients with intrinsic glial brain tumors (n = 27) underwent structural and spectroscopic magnetic resonance imaging prior to surgery. 2-HG levels from MRS data were quantified using LC-Model software, based upon a simulated spectrum obtained from a GAMMA library added to the existing prior knowledge database. The resected tumors were then analyzed for IDH1 mutational status by genomic DNA sequencing, Ki-67 proliferation index by immunohistochemistry, and concentrations of 2-HG and other metabolites by liquid chromatography–mass spectrometry (LC–MS). MRS detected elevated 2-HG levels in gliomas with IDH1 mutations compared to those with wild-type IDH1 (P = 0.003). The 2-HG levels measured in vivo with MRS were significantly correlated with those measured ex vivo from the corresponding tumor samples using LC–MS (r2 = 0.56; P = 0.0001). Compared with wild-type tumors, those with IDH1 mutations had elevated choline (P = 0.01) and decreased glutathione (P = 0.03) on MRS. Among the IDH1 mutated gliomas, quantitative 2-HG values were correlated with the Ki-67 proliferation index of the tumors (r2 = 0.59; P = 0.026). In conclusion, water-suppressed proton (1H) MRS provides a non-invasive measure of 2-HG in gliomas, and may serve as a potential biomarker for patients with IDH1 mutant brain tumors. In addition to 2-HG, alterations in several other metabolites measured by MRS correlate with IDH1 mutation status.

Keywords

2 hydroxyglutarate (2-HG) Glioma Magnetic resonance spectroscopy Brain tumor Isocitrate dehydrogenase LC-Model 

Supplementary material

11060_2011_737_MOESM1_ESM.doc (46 kb)
Supplementary material 1 (DOC 47 kb)
11060_2011_737_MOESM2_ESM.tif (7.7 mb)
Supplementary material 2 (TIFF 7912 kb)
11060_2011_737_MOESM3_ESM.tif (5.7 mb)
Supplementary material 3 (TIFF 5791 kb)
11060_2011_737_MOESM4_ESM.tif (2.8 mb)
Supplementary material 4 (TIFF 2914 kb)
11060_2011_737_MOESM5_ESM.tif (607 kb)
Supplementary material 5 (TIFF 607 kb)

References

  1. 1.
    Balss J, Meyer J, Mueller W, Korshunov A, Hartmann C, von Deimling A (2008) Analysis of the IDH1 codon 132 mutation in brain tumors. Acta Neuropathol 116(6):597–602PubMedCrossRefGoogle Scholar
  2. 2.
    Bleeker FE, Lamba S, Leenstra S, Troost D, Hulsebos T, Vandertop WP et al (2009) IDH1 mutations at residue p.R132 (IDH1(R132)) occur frequently in high-grade gliomas but not in other solid tumors. Hum Mutat 30(1):7–11PubMedCrossRefGoogle Scholar
  3. 3.
    De Carli E, Wang X, Puget S (2009) IDH1 and IDH2 mutations in gliomas. N Engl J Med 360(21):2248 author reply 9PubMedCrossRefGoogle Scholar
  4. 4.
    Parsons DW, Jones S, Zhang X, Lin JC, Leary RJ, Angenendt P et al (2008) An integrated genomic analysis of human glioblastoma multiforme. Science 321(5897):1807–1812PubMedCrossRefGoogle Scholar
  5. 5.
    Yan H, Parsons DW, Jin G, McLendon R, Rasheed BA, Yuan W et al (2009) IDH1 and IDH2 mutations in gliomas. N Engl J Med 360(8):765–773PubMedCrossRefGoogle Scholar
  6. 6.
    Watanabe T, Nobusawa S, Kleihues P, Ohgaki H (2009) IDH1 mutations are early events in the development of astrocytomas and oligodendrogliomas. Am J Pathol 174(4):1149–1153PubMedCrossRefGoogle Scholar
  7. 7.
    Ducray F, Marie Y, Sanson M (2009) IDH1 and IDH2 mutations in gliomas. N Engl J Med 360(21):2248 author reply 9PubMedCrossRefGoogle Scholar
  8. 8.
    Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD et al (2010) Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17(1):98–110PubMedCrossRefGoogle Scholar
  9. 9.
    Dubbink HJ, Taal W, van Marion R, Kros JM, van Heuvel I, Bromberg JE et al (2009) IDH1 mutations in low-grade astrocytomas predict survival but not response to temozolomide. Neurology 73(21):1792–1795PubMedCrossRefGoogle Scholar
  10. 10.
    Hartmann C, Meyer J, Balss J, Capper D, Mueller W, Christians A et al (2009) Type and frequency of IDH1 and IDH2 mutations are related to astrocytic and oligodendroglial differentiation and age: a study of 1, 010 diffuse gliomas. Acta Neuropathol 118(4):469–474PubMedCrossRefGoogle Scholar
  11. 11.
    Dang L, White DW, Gross S, Bennett BD, Bittinger MA, Driggers EM et al (2009) Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 462(7274):739–744PubMedCrossRefGoogle Scholar
  12. 12.
    Aghili M, Zahedi F, Rafiee E (2009) Hydroxyglutaric aciduria and malignant brain tumor: a case report and literature review. J Neurooncol 91(2):233–236PubMedCrossRefGoogle Scholar
  13. 13.
    Bottomley PA (1987) Spatial localization in NMR spectroscopy in vivo. Ann N Y Acad Sci 508:333–348PubMedCrossRefGoogle Scholar
  14. 14.
    Ogg RJ, Kingsley PB, Taylor JS (1994) WET, a T1- and B1-insensitive water-suppression method for in vivo localized 1H NMR spectroscopy. J Magn Reson B 104(1):1–10PubMedCrossRefGoogle Scholar
  15. 15.
    Provencher SW (1993) Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn Reson Med 30(6):672–679PubMedCrossRefGoogle Scholar
  16. 16.
    Smith SA, Levante TO, Meier BH, Ernst RR (1994) Computer simulations in magnetic resonance.An object oriented programming approach. J Magn Reson A106:75–105Google Scholar
  17. 17.
    Helms G (2008) The principles of quantification applied to in vivo proton MR spectroscopy. Eur J Radiol 67(2):218–229PubMedCrossRefGoogle Scholar
  18. 18.
    Cavassila S, Deval S, Huegen C, van Ormondt D, Graveron-Demilly D (2001) Cramer-Rao bounds: an evaluation tool for quantitation. NMR Biomed 14(4):278–283PubMedCrossRefGoogle Scholar
  19. 19.
    Reitman ZJ, Jin G, Karoly ED, Spasojevic I, Yang J, Kinzler KW et al (2011) Profiling the effects of isocitrate dehydrogenase 1 and 2 mutations on the cellular metabolome. Proc Natl Acad Sci U S A 108(8):3270–3275PubMedCrossRefGoogle Scholar
  20. 20.
    Jin G, Reitman ZJ, Spasojevic I, Batinic-Haberle I, Yang J, Schmidt-Kittler O et al (2011) 2-Hydroxyglutarate production, but not dominant negative function, is conferred by glioma-derived NADP-dependent isocitrate dehydrogenase mutations. PLoS One 6(2):e16812PubMedCrossRefGoogle Scholar
  21. 21.
    Chou WC, Hou HA, Chen CY, Tang JL, Yao M, Tsay W et al (2010) Distinct clinical and biologic characteristics in adult acute myeloid leukemia bearing the isocitrate dehydrogenase 1 mutation. Blood 115(14):2749–2754PubMedCrossRefGoogle Scholar
  22. 22.
    Gross S, Cairns RA, Minden MD, Driggers EM, Bittinger MA, Jang HG et al (2010) Cancer-associated metabolite 2-hydroxyglutarate accumulates in acute myelogenous leukemia with isocitrate dehydrogenase 1 and 2 mutations. J Exp Med 207(2):339–344PubMedCrossRefGoogle Scholar
  23. 23.
    Ward PS, Patel J, Wise DR, Abdel-Wahab O, Bennett BD, Coller HA et al (2010) The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting alpha-ketoglutarate to 2-hydroxyglutarate. Cancer Cell 17(3):225–234PubMedCrossRefGoogle Scholar
  24. 24.
    Martinez-Bisbal MC, Celda B (2009) Proton magnetic resonance spectroscopy imaging in the study of human brain cancer. Q J Nucl Med Mol Imaging 53(6):618–630PubMedGoogle Scholar
  25. 25.
    Tedeschi G, Lundbom N, Raman R, Bonavita S, Duyn JH, Alger JR et al (1997) Increased choline signal coinciding with malignant degeneration of cerebral gliomas: a serial proton magnetic resonance spectroscopy imaging study. J Neurosurg 87(4):516–524PubMedCrossRefGoogle Scholar
  26. 26.
    Dowling C, Bollen AW, Noworolski SM, McDermott MW, Barbaro NM, Day MR et al (2001) Preoperative proton MR spectroscopic imaging of brain tumors: correlation with histopathologic analysis of resection specimens. AJNR Am J Neuroradiol 22(4):604–612PubMedGoogle Scholar
  27. 27.
    Labussiere M, Wang XW, Idbaih A, Ducray F, Sanson M (2010) Prognostic markers in gliomas. Future oncology (London, England) 6(5):733–739CrossRefGoogle Scholar
  28. 28.
    Toedt G, Barbus S, Wolter M, Felsberg J, Tews B, Blond F et al (2011) Molecular signatures classify astrocytic gliomas by IDH1 mutation status. Int J Cancer 128(5):1095–1103PubMedCrossRefGoogle Scholar
  29. 29.
    van den Bent MJ, Dubbink HJ, Marie Y, Brandes AA, Taphoorn MJ, Wesseling P et al (2010) IDH1 and IDH2 mutations are prognostic but not predictive for outcome in anaplastic oligodendroglial tumors: a report of the European Organization for Research and Treatment of Cancer Brain Tumor Group. Clin Cancer Res 16(5):1597–1604PubMedCrossRefGoogle Scholar
  30. 30.
    Dang L, Jin S, Su SM (2010) IDH mutations in glioma and acute myeloid leukemia. Trends Mol Med 16(9):387–397PubMedCrossRefGoogle Scholar
  31. 31.
    Wiseman H, Halliwell B (1996) Damage to DNA by reactive oxygen and nitrogen species: role in inflammatory disease and progression to cancer. Biochem J 313(Pt 1):17–29PubMedGoogle Scholar
  32. 32.
    Xu W, Yang H, Liu Y, Yang Y, Wang P, Kim S-H et al (2011) Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of [alpha]-ketoglutarate-dependent dioxygenases. Cancer Cell 19(1):17–30PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2011

Authors and Affiliations

  • Whitney B. Pope
    • 1
  • Robert M. Prins
    • 2
  • M. Albert Thomas
    • 1
  • Rajakumar Nagarajan
    • 1
  • Katharine E. Yen
    • 7
  • Mark A. Bittinger
    • 7
  • Noriko Salamon
    • 1
  • Arthur P. Chou
    • 2
  • William H. Yong
    • 3
  • Horacio Soto
    • 2
  • Neil Wilson
    • 1
  • Edward Driggers
    • 7
  • Hyun G. Jang
    • 7
  • Shinsan M. Su
    • 7
  • David P. Schenkein
    • 7
  • Albert Lai
    • 4
  • Timothy F. Cloughesy
    • 4
  • Harley I. Kornblum
    • 5
  • Hong Wu
    • 6
  • Valeria R. Fantin
    • 7
  • Linda M. Liau
    • 2
  1. 1.Department of Radiological Sciences, David Geffen School of Medicine at UCLAUniversity of California at Los AngelesLos AngelesUSA
  2. 2.Department of Neurosurgery, David Geffen School of Medicine at UCLAUniversity of California at Los AngelesLos AngelesUSA
  3. 3.Department of Pathology & Laboratory Medicine, David Geffen School of Medicine at UCLAUniversity of California at Los AngelesLos AngelesUSA
  4. 4.Department of Neurology, David Geffen School of Medicine at UCLAUniversity of California at Los AngelesLos AngelesUSA
  5. 5.Department of Psychiatry & Behavioral Sciences, David Geffen School of Medicine at UCLAUniversity of California at Los AngelesLos AngelesUSA
  6. 6.Department of Molecular & Medical Pharmacology, David Geffen School of Medicine at UCLAUniversity of California at Los AngelesLos AngelesUSA
  7. 7.Agios PharmaceuticalsCambridgeUSA

Personalised recommendations