Advertisement

Journal of Neuro-Oncology

, Volume 107, Issue 1, pp 61–67 | Cite as

Valproic acid sensitizes human glioma cells for temozolomide and γ-radiation

  • Krista A. Van Nifterik
  • Jaap Van den Berg
  • Ben J. Slotman
  • M. Vincent M. Lafleur
  • Peter SminiaEmail author
  • Lukas J. A. Stalpers
Laboratory Investigation-Human/Animal Tissue

Abstract

Temozolomide (TMZ) is given in addition to radiotherapy in glioma patients, but its interaction with the commonly prescribed antiepileptic drug valproic acid (VPA) is largely unknown. Induction of DNA demethylation by VPA could potentially induce expression of the O6-methylguanine-DNA-methyltransferase (MGMT) protein, causing resistance to TMZ and thereby antagonizing its effect. Therefore, this study investigates the interaction between VPA, TMZ, and γ-radiation. Two glioma cell lines were used that differ in TMZ sensitivity caused by the absence (D384) or presence (T98) of the MGMT protein. VPA was administered before (24/48 h) or after (24 h) single doses of γ-radiation; or, after 24 h, VPA treatment was accompanied by a single dose of TMZ for another 24 h. For trimodal treatment the combination of VPA and TMZ was followed by single doses of γ-radiation. In both cell lines VPA caused enhancement of the radiation response after preincubation (DMF0.2 1.4 and 1.5) but not after postirradiation (DMF0.2 1.1 and 1.0). The combination of VPA and TMZ caused enhanced cytotoxicity (DMF0.2 1.7) in both the TMZ-sensitive cell line (D384) and the TMZ-resistant cell line (T98). The combination of VPA and TMZ caused a significant radiation enhancement (DMF0.2 1.9 and 1.6) that was slightly more effective than that of VPA alone. VPA does not antagonize the cytotoxic effects of TMZ. Preincubation with VPA enhances the effect of both γ-radiation and TMZ, in both a TMZ-sensitive and a TMZ-resistant human glioma cell line. VPA combined with TMZ may lead to further enhancement of the radiation response.

Keywords

Trimodal treatment γ-Radiation Temozolomide Valproic acid Glioma cells 

Notes

Acknowledgment

TMZ was a generous gift from Schering-Plough RS. This work was supported by the Dutch Cancer Society (grant no. VU 2000-2149).

References

  1. 1.
    Stupp R, Mason WP, van den Bent MJ et al (2005) European Organisation for Research and Treatment of Cancer Brain Tumor and Radiotherapy Groups; National Cancer Institute of Canada Clinical Trials Group. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996PubMedCrossRefGoogle Scholar
  2. 2.
    Stupp R, Hegi ME, Mason WP et al (2009) European Organisation for Research and Treatment of Cancer Brain Tumour and Radiation Oncology Groups; National Cancer Institute of Canada Clinical Trials Group. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 10:459–466PubMedCrossRefGoogle Scholar
  3. 3.
    Kaina B, Ziouta A, Ochs K et al (1997) Chromosomal instability, reproductive cell death and apoptosis induced by O6-methylguanine in Mex-, Mex + and methylation-tolerant mismatch repair compromised cells: facts and models. Mutat Res 381:227–241PubMedCrossRefGoogle Scholar
  4. 4.
    D’Atri S, Tentori L, Lacal PM et al (1998) Involvement of the mismatch repair system in temozolomide-induced apoptosis. Mol Pharmacol 54:334–341PubMedGoogle Scholar
  5. 5.
    Hirose Y, Katayama M, Stokoe D et al (2003) The p38 mitogen-activated protein kinase pathway links the DNA mismatch repair system to the G2 checkpoint and to resistance to chemotherapeutic DNA-methylating agents. Mol Cell Biol 23:8306–8315PubMedCrossRefGoogle Scholar
  6. 6.
    Brennand J, Margison GP (1986) Reduction of the toxicity and mutagenicity of alkylating agents in mammalian cells harboring the Escherichia coli alkyltransferase gene. Proc Natl Acad Sci USA 83:6292–6296PubMedCrossRefGoogle Scholar
  7. 7.
    Gerson SL (2004) MGMT: its role in cancer aetiology and cancer therapeutics. Nat Rev Cancer 4:296–307PubMedCrossRefGoogle Scholar
  8. 8.
    Hegi ME, Diserens AC, Godard S et al (2004) Clinical trial substantiates the predictive value of O-6-methylguanine-DNA methyltransferase promoter methylation in glioblastoma patients treated with temozolomide. Clin Cancer Res 10:1871–1874PubMedCrossRefGoogle Scholar
  9. 9.
    Hegi ME, Diserens AC, Gorlia T et al (2005) MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 352:997–1003PubMedCrossRefGoogle Scholar
  10. 10.
    Van Rijn J, Heimans JJ, van den Berg J et al (2000) Survival of human glioma cells treated with various combination of temozolomide and X-rays. Int J Radiat Oncol Biol Phys 47:779–784PubMedCrossRefGoogle Scholar
  11. 11.
    Chakravarti A, Erkkinen MG, Nestler U et al (2006) Temozolomide-mediated radiation enhancement in glioblastoma: a report on underlying mechanisms. Clin Cancer Res 12:4738–4746PubMedCrossRefGoogle Scholar
  12. 12.
    Van Nifterik KA, van den Berg J, Stalpers LJ et al (2007) Differential radiosensitizing potential of temozolomide in MGMT promoter methylated glioblastoma multiforme cell lines. Int J Radiat Oncol Biol Phys 69:1246–1253PubMedCrossRefGoogle Scholar
  13. 13.
    Kil WJ, Cerna D, Burgan WE et al (2008) In vitro and in vivo radiosensitization induced by the DNA methylating agent temozolomide. Clin Cancer Res 14:931–938PubMedCrossRefGoogle Scholar
  14. 14.
    Göttlicher M, Minucci S, Zhu P et al (2001) Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells. EMBO J 20:6969–6978PubMedCrossRefGoogle Scholar
  15. 15.
    Kostrouchová M, Kostrouch Z, Kostrouchová M (2007) Valproic acid, a molecular lead to multiple regulatory pathways. Folia Biol (Praha) 53:37–49Google Scholar
  16. 16.
    Phiel CJ, Zhang F, Huang EY et al (2001) Histone deacetylase is a direct target of valproic acid, a potent anticonvulsant, mood stabilizer, and teratogen. J Biol Chem 276:36734–36741PubMedCrossRefGoogle Scholar
  17. 17.
    Camphausen K, Scott T, Sproull M et al (2004) Enhancement of xenograft tumor radiosensitivity by the histone deacetylase inhibitor MS-275 and correlation with histone hyperacetylation. Clin Cancer Res 10:6066–6071PubMedCrossRefGoogle Scholar
  18. 18.
    Kim JH, Shin JH, Kim IH (2004) Susceptibility and radiosensitization of human glioblastoma cells to trichostatin A, a histone deacetylase inhibitor. Int J Radiat Oncol Biol Phys 59:1174–1180PubMedCrossRefGoogle Scholar
  19. 19.
    Chinnaiyan P, Vallabhaneni G, Armstrong E et al (2005) Modulation of radiation response by histone deacetylase inhibition. Int J Radiat Oncol Biol Phys 62:223–229PubMedCrossRefGoogle Scholar
  20. 20.
    Entin-Meer M, Rephaeli A, Yang X et al (2005) Butyric acid prodrugs are histone deacetylase inhibitors that show antineoplastic activity and radiosensitizing capacity in the treatment of malignant gliomas. Mol Cancer Ther 4:1952–1961PubMedCrossRefGoogle Scholar
  21. 21.
    Karagiannis TC, Harikrishnan KN, El-Osta A (2005) The histone deacetylase inhibitor, Trichostatin A, enhances radiation sensitivity and accumulation of gammaH2A. X. Cancer Biol Ther 4:787–793PubMedGoogle Scholar
  22. 22.
    Kim IA, Shin JH, Kim IH et al (2006) Histone deacetylase inhibitor-mediated radiosensitization of human cancer cells: class differences and the potential influence of p53. Clin Cancer Res 12:940–949PubMedCrossRefGoogle Scholar
  23. 23.
    Entin-Meer M, Yang X, VandenBerg SR et al (2007) In vivo efficacy of a novel histone deacetylase inhibitor in combination with radiation for the treatment of gliomas. Neuro Oncol 9:82–88PubMedCrossRefGoogle Scholar
  24. 24.
    Karagiannis TC, Kn H, El-Osta A (2006) The epigenetic modifier, valproic acid, enhances radiation sensitivity. Epigenetics 1:131–137PubMedCrossRefGoogle Scholar
  25. 25.
    Chen X, Wong P, Radany E, Wong JY (2009) HDAC inhibitor, valproic acid, induces p53-dependent radiosensitization of colon cancer cells. Cancer Biother Radiopharm 24:689–699PubMedCrossRefGoogle Scholar
  26. 26.
    Blattmann C, Oertel S, Ehemann V et al (2010) Enhancement of radiation response in osteosarcoma and rhabomyosarcoma cell lines by histone deacetylase inhibition. Int J Radiat Oncol Biol Phys 78:237–245PubMedCrossRefGoogle Scholar
  27. 27.
    Debeb BG, Xu W, Mok H et al (2010) Differential radiosensitizing effect of valproic acid in differentiation versus self-renewal promoting culture conditions. Int J Radiat Oncol Biol Phys 76:889–895PubMedCrossRefGoogle Scholar
  28. 28.
    Camphausen K, Cerna D, Scott T et al (2005) Enhancement of in vitro and in vivo tumor cell radiosensitivity by valproic acid. Int J Cancer 114:380–386PubMedCrossRefGoogle Scholar
  29. 29.
    Chinnaiyan P, Cerna D, Burgan WE et al (2008) Postradiation sensitization of the histone deacetylase inhibitor valproic acid. Clin Cancer Res 14:5410–5415PubMedCrossRefGoogle Scholar
  30. 30.
    Detich N, Bovenzi V, Szyf M (2003) Valproate induces replication-independent active DNA demethylation. J Biol Chem 278:27586–27592PubMedCrossRefGoogle Scholar
  31. 31.
    Balmforth AJ, Ball SG, Freshney RI et al (1986) D-1 dopaminergic and beta-adrenergic stimulation of adenylate cyclase in a clone derived from the human astrocytoma cell line G-CCM. J Neurochem 47:715–719PubMedCrossRefGoogle Scholar
  32. 32.
    Van Nifterik KA, van den Berg J, van der Meide WF et al (2010) Absence of the MGMT protein as well as methylation of the MGMT promoter predict the sensitivity for temozolomide. Br J Cancer 103:29–35PubMedCrossRefGoogle Scholar
  33. 33.
    Franken NA, Rodermond HM, Stap J et al (2006) Clonogenic assay of cells in vitro. Nat Protoc 1:2315–2319PubMedCrossRefGoogle Scholar
  34. 34.
    Kim MS, Blake M, Baek JH et al (2003) Inhibition of histonedeacetylase increases cytotoxicity to anticancer drugs targeting DNA. Cancer Res 63:7291–7300PubMedGoogle Scholar
  35. 35.
    Ciusani E, Balzarotti M, Calatozzolo C et al (2007) Valproic acid increases the in vitro effects of nitrosureas on human glioma cell lines. Oncol Res 16:453–463PubMedCrossRefGoogle Scholar
  36. 36.
    Das CM, Aguilera D, Vasquez H et al (2007) Valproic acid induces p21 and topoisomerase-II (alpha/beta) expression and synergistically enhances etoposide cytotoxicity in human glioblastoma cell lines. J Neurooncol 85:159–170PubMedCrossRefGoogle Scholar
  37. 37.
    Sasai K, Akagi T, Aoyanagi E et al (2007) O6-methylguanine-DNA methyltransferase is downregulated in transformed astrocyte cells: implications for anti-glioma therapies. Mol Cancer 6:36PubMedCrossRefGoogle Scholar
  38. 38.
    Fu J, Shao CJ, Chen FR et al (2010) Autophagy induced by valproic acid is associated with oxidative stress in glioma cell lines. Neuro Oncol 12:328–340PubMedCrossRefGoogle Scholar
  39. 39.
    Ständer M, Dichgans J, Weller M (1998) Anticonvulsant drugs fail to modulate chemotherapy-induced cytotoxicity and growth inhibition of human malignant glioma cells. J Neurooncol 37:191–198PubMedCrossRefGoogle Scholar
  40. 40.
    Oberndorfer S, Piribauer M, Marosi C et al (2005) P450 enzyme inducing and non-enzyme inducing antiepileptics in glioblastoma patients treated with standard chemotherapy. J Neurooncol 72:255–260PubMedCrossRefGoogle Scholar
  41. 41.
    Grewal J, Dellinger CA, Yung WK (2007) Fatal reactivation of hepatitis B with temozolomide. N Engl J Med 356:1591–1592PubMedCrossRefGoogle Scholar
  42. 42.
    Neyns B, Hoorens A, Stupp R (2008) Valproic acid related idiosyncratic drug induced hepatotoxicity in a glioblastoma patient treated with temozolomide. Acta Neurol Belg 108:131–134PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2011

Authors and Affiliations

  • Krista A. Van Nifterik
    • 1
  • Jaap Van den Berg
    • 1
  • Ben J. Slotman
    • 1
  • M. Vincent M. Lafleur
    • 1
  • Peter Sminia
    • 1
    Email author
  • Lukas J. A. Stalpers
    • 2
  1. 1.Department of Radiation OncologyVU University Medical CenterAmsterdamThe Netherlands
  2. 2.Department of RadiotherapyAcademic Medical CenterAmsterdamThe Netherlands

Personalised recommendations