Advertisement

Journal of Neuro-Oncology

, Volume 107, Issue 1, pp 37–49 | Cite as

Novel amplifications in pediatric medulloblastoma identified by genome-wide copy number profiling

  • Helena Nord
  • Susan Pfeifer
  • Pelle Nilsson
  • Johanna Sandgren
  • Svetlana Popova
  • Bo Strömberg
  • Irina Alafuzoff
  • Monica Nistér
  • Teresita Díaz de StåhlEmail author
Laboratory Investigation - Human/Animal Tissue

Abstract

Medulloblastoma (MB) is a WHO grade IV, invasive embryonal CNS tumor that mainly affects children. The aggressiveness and response to therapy can vary considerably between cases, and despite treatment, ~30% of patients die within 2 years from diagnosis. Furthermore, the majority of survivors suffer long-term side-effects due to severe management modalities. Several distinct morphological features have been associated with differences in biological behavior, but improved molecular-based criteria that better reflect the underlying tumor biology are in great demand. In this study, we profiled a series of 25 MB with a 32K BAC array covering 99% of the current assembly of the human genome for the identification of genetic copy number alterations possibly important in MB. Previously known aberrations as well as several novel focally amplified loci could be identified. As expected, the most frequently observed alteration was the combination of 17p loss and 17q gain, which was detected in both high- and standard-risk patients. We also defined minimal overlapping regions of aberrations, including 16 regions of gain and 18 regions of loss in various chromosomes. A few noteworthy narrow amplified loci were identified on autosomes 1 (38.89–41.97 and 84.89–90.76 Mb), 3 (27.64–28.20 and 35.80–43.50 Mb), and 8 (119.66–139.79 Mb), aberrations that were verified with an alternative platform (Illumina 610Q chips). Gene expression levels were also established for these samples using Affymetrix U133Plus2.0 arrays. Several interesting genes encompassed within the amplified regions and presenting with transcript upregulation were identified. These data contribute to the characterization of this malignant childhood brain tumor and confirm its genetic heterogeneity.

Keywords

Amplicon Medulloblastoma Array-CGH BAC array Illumina LMO4 

Abbreviations

Array-CGH

Array-comparative genomic hybridization

BAC

Bacterial artificial chromosome

CNS

Central nervous system

CNV

Copy number variation

i(17)(q10)

Isochromosome 17q

MB

Medulloblastoma

MOR

Minimal overlapping region

SMAP

Segmental maximum a posteriori

WHO

World Health Organization

Notes

Acknowledgments

The authors wish to thank Prof. Jan Dumanski for providing us with 32K arrays, Robin Andersson, at the Linnaeus Centre for Bioinformatics, for developing SMAP within the LCB Data Warehouse, the late Dr. Magdalena Hartman for initiating the CNS tumor biobank at UAS, and Dr. Inga Hansson for immunohistochemical staining of FFPE tissue sections. This work was supported by the Swedish Childhood Cancer Foundation, the Swedish Cancer Society, and Uppsala University. Illumina genotyping was performed at the SNP Technology Platform, Uppsala, Sweden (http://www.genotyping.se), supported by Uppsala University and the Knut and Alice Wallenberg Foundation. Affymetrix expression analysis was performed at the Uppsala Array Platform (http://www.medsci.uu.se/klinfarm/arrayplatform/).

Supplementary material

11060_2011_716_MOESM1_ESM.doc (40 kb)
Table S1 Association in KEGG pathways of upregulated genes, in medulloblastoma samples (1253 and 5594) presenting with novel focal amplifications. Enriched KEGG pathways, according to DAVID Functional Annotation Tool (http://david.abcc.ncifcrf.gov), associated with overexpressed transcripts in medulloblastoma samples 1253 and 5594, relative to the average expression level of the corresponding probes in cerebellum. The genes and percentage of involved genes (involved genes/total genes) in the pathway are shown. To avoid overcounting of duplicated genes, P values were calculated using the Fisher exact statistic based on corresponding DAVID gene IDs, by which all redundancy in original IDs is removed. Adjusted P values according to Benjamini correction are also shown (DOC 39 kb)
11060_2011_716_MOESM2_ESM.doc (220 kb)
Table S2 Minimal overlapping regions of aberrations encompassing at least two tumors were determined. Gene expression data for medulloblastoma grade IV, from series GSE10327 [38], were downloaded from Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo/) and compared with gene expression data from normal cerebellum from series GSE3526, both using platform GPL570: Affymetrix U133Plus2.0 (see Supplementary Fig. 4 for sample details). Analysis (3′ Expression Arrays-RMA) was run in Expression Console v1.1 (Affymetrix). The B statistic was calculated using the ‘limma’ package [58] of the R language (http://www.r-project.org/), in the framework of an empirical Bayes method [59] and used to select differentially expressed genes in replicated complementary DNA (cDNA) microarray experiments. The top genes significantly up- or downregulated within minimal overlapping regions of aberrations (maximum difference in mean average value) are listed. The log2 fold change ratio is indicated in parenthesis after the gene name. aRegions of completely or partially overlapping loci identified in previous medulloblastoma studies are indicated. bDel: minimal overlapping regions of deletion; gain: minimal overlapping regions of gain. Cancer genes, according to Sanger Cancer Gene Census (http://www.sanger.ac.uk/genetics/CGP/Census/) and genes known to be involved in medulloblastoma formation are indicated in red (DOC 220 kb)
11060_2011_716_MOESM3_ESM.eps (5.2 mb)
Fig. S3 Identification of a chromosome 8 amplicon in medulloblastoma sample 0013 encompassing MYC. a Whole-genome Illumina 610Q chip profile for sample 0013. Log R ratio and B-allele frequency values are shown. Detailed view of the amplicon on chromosome 8, for both 32K array (b) and Illumina chip (c). Two green lines above the ideogram indicate an amplified region, and a red bar below it indicates a deletion. 32K array and Illumina 610Q chip profiles show the same pattern of aberrations (EPS 5333 kb)
11060_2011_716_MOESM4_ESM.eps (5.4 mb)
Fig. S4 Identification of two novel amplicons on chromosome 3 in medulloblastoma sample 5594. a Whole-genome Illumina 610Q chip profile for sample 5594. Log R ratio and B-allele frequency values are shown. Detailed view of the amplicons on chromosome 3, for both 32K array (b) and Illumina chip (c). Two green lines above the ideogram indicate an amplified region, and a red bar below it indicates a deletion. 32K array and Illumina 610Q chip profiles show concordant pattern of aberrations (EPS 5529 kb)
11060_2011_716_MOESM5_ESM.eps (5.1 mb)
Fig. S5 Identification of novel amplicons on chromosome 1 in medulloblastoma sample 1253. a Whole-genome Illumina 610Q chip profile for sample 1253. Log R ratio and B-allele frequency values are shown. Detailed view of the amplicons on chromosome 1, for both 32K array (b) and Illumina chip (c). An additional amplicon was detected in the second biopsy profiled on Illumina chip, indicating the presence of intratumoral heterogeneity. Two green lines above the ideogram indicate an amplified region, and a red bar below it indicates a deletion (EPS 5248 kb)
11060_2011_716_MOESM6_ESM.eps (8.4 mb)
Fig. S6 Unsupervised two-way hierarchical cluster analysis of 64 medulloblastoma and 9 cerebellum samples. Gene expression data for two of our tumor samples (1253 and 5594) and from medulloblastoma series GSE10327 (samples GSM260959, GSM260960, GSM260961, GSM260962, GSM260963, GSM260964, GSM260965, GSM260966, GSM260967, GSM260968, GSM260969, GSM260970, GSM260971, GSM260972, GSM260973, GSM260974, GSM260975, GSM260976, GSM260977, GSM260978, GSM260979, GSM260980, GSM260981, GSM260982, GSM260983, GSM260984, GSM260985, GSM260986, GSM260987, GSM260988, GSM260989, GSM260990, GSM260991, GSM260992, GSM260993, GSM260994, GSM260995, GSM260996, GSM260997, GSM260998, GSM260999, GSM261000, GSM261001, GSM261002, GSM261003, GSM261004, GSM261005, GSM261006, GSM261007, GSM261008, GSM261009, GSM261010, GSM261011, GSM261012, GSM261013, GSM261014, GSM261015, GSM261016, GSM261017, GSM261018, GSM261019, and GSM261020), as well as data from normal cerebellum from series GSE3526 (samples GSM80616, GSM80617, GSM80618, GSM80619, GSM80626, GSM80636, GSM80637, GSM80638, and GSM80639), downloaded from Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo/), were used, all performed on platform GPL570: Affymetrix U133Plus2.0. The group to which each medulloblastoma sample was classified according to the original publication (A–E) [38] is indicated after the name of the sample. Unsupervised two-way hierarchical clustering was performed with the TMEV program using Pearson correlation [29]. A low-intensity cutoff filter (value 5) was applied. Furthermore, we selected for clustering the smallest set of genes with the greatest variance in expression (variance filter in TMEV program, value 5). Expression data of 492 most differentially expressed genes identified distinct clusters. Sample 1253 clustered together with samples from group B: SHH group, and sample 5594 with group C [38]. As expected, samples from group A and B clustered in separated groups and tumors from group C, D, and E appear closely related [38]. Cerebellum samples clustered separately (EPS 8580 kb)
11060_2011_716_MOESM7_ESM.eps (4.8 mb)
Fig. S7 Medulloblastoma samples displaying aberrant chromosome 17 profiles. Fifteen samples were detected with aberrations on chromosome 17. Ten cases displayed loss of 17p combined with gain of 17q, three samples (3237, 0499, and 7171) presented with gain of 17q, and two tumors (5335 and 0013) with loss of 17p. Sample 0013 displayed also an interstitial gain of 17q. Among samples with 17p loss combined with 17q gain, five different breakpoints were identified, indicated as AE, see Supplementary Fig. 6. Breakpoints A 15.84–16.20 Mb, B 16.29–16.65 Mb, C 18.75–19.12 Mb (the most common), D 21.33–21.77 Mb, and E 22.06–22.60 Mb. Each individual clone was assigned as: balanced (CNC = 0, indicated in blue); gained, (CNC = 1 in green); or deleted (CNC = −1 red), see “Materials and methods.” The X-axis shows the clone positions, and the Y-axis depicts fluorescence ratios. Clone mapping information was obtained from Ensemble (http://ensembl.org/biomart), and coordinates from human genome assembly of March 2006 (NCBI Build 36, hg18) were used (EPS 4934 kb)
11060_2011_716_MOESM8_ESM.eps (938 kb)
Fig. S8 Chromosome 17 breakpoints identified in medulloblastoma samples. AE Five different breakpoint regions were identified, indicated in grey color. The most common one C was present in six tumors, and the others (A, B, D, E) were detected in only one sample each, see Supplementary Fig. 5. The genes encompassed in the different regions are drawn. Four of the breakpoint regions involved copy number polymorphic regions. Coding exons are represented by vertical lines, and connected by horizontal lines representing introns. Arrowheads on the connecting intron lines indicate the direction of transcription. Provisional genes (not reviewed) are indicated in light blue (EPS 937 kb)

References

  1. 1.
    Pomeroy SL, Tamayo P, Gaasenbeek M, Sturla LM, Angelo M, McLaughlin ME, Kim JY, Goumnerova LC, Black PM, Lau C, Allen JC, Zagzag D, Olson JM, Curran T, Wetmore C, Biegel JA, Poggio T, Mukherjee S, Rifkin R, Califano A, Stolovitzky G, Louis DN, Mesirov JP, Lander ES, Golub TR (2002) Prediction of central nervous system embryonal tumour outcome based on gene expression. Nature 415:436–442. doi: 10.1038/415436a PubMedCrossRefGoogle Scholar
  2. 2.
    Louis DN, Ohgaki H, Wiestler OD, Cavenee WK (2007) WHO classification of tumors of the central nervous system. International Agency for Research on Cancer (IARC), LyonGoogle Scholar
  3. 3.
    Read TA, Hegedus B, Wechsler-Reya R, Gutmann DH (2006) The neurobiology of neurooncology. Ann Neurol 60:3–11. doi: 10.1002/ana.20912 PubMedCrossRefGoogle Scholar
  4. 4.
    von Koch CS, Gulati M, Aldape K, Berger (2002) Familial medulloblastoma: case report of one family and review of the literature. Neurosurgery 51:227–233 discussion 233CrossRefGoogle Scholar
  5. 5.
    Lo KC, Ma C, Bundy BN, Pomeroy SL, Eberhart CG, Cowell JK (2007) Gain of 1q is a potential univariate negative prognostic marker for survival in medulloblastoma. Clin Cancer Res 13:7022–7028. doi: 10.1158/1078-0432.CCR-07-1420 PubMedCrossRefGoogle Scholar
  6. 6.
    Pfister S, Remke M, Benner A, Mendrzyk F, Toedt G, Felsberg J, Wittmann A, Devens F, Gerber NU, Joos S, Kulozik A, Reifenberger G, Rutkowski S, Wiestler OD, Radlwimmer B, Scheurlen W, Lichter P, Korshunov A (2009) Outcome prediction in pediatric medulloblastoma based on DNA copy-number aberrations of chromosomes 6q and 17q and the MYC and MYCN loci. J Clin Oncol 27:1627–1636. doi: 10.1200/JCO.2008.17.9432 PubMedCrossRefGoogle Scholar
  7. 7.
    Lannering B, Sandstrom PE, Holm S, Lundgren J, Pfeifer S, Samuelsson U, Stromberg B, Gustafsson G (2009) Classification, incidence and survival analyses of children with CNS tumours diagnosed in Sweden 1984–2005. Acta Paediatr 98:1620–1627PubMedCrossRefGoogle Scholar
  8. 8.
    Lamont JM, McManamy CS, Pearson AD, Clifford SC, Ellison DW (2004) Combined histopathological and molecular cytogenetic stratification of medulloblastoma patients. Clin Cancer Res 10:5482–5493. doi: 10.1158/1078-0432.CCR-03-0721 PubMedCrossRefGoogle Scholar
  9. 9.
    Polkinghorn WR, Tarbell NJ (2007) Medulloblastoma: tumorigenesis, current clinical paradigm, and efforts to improve risk stratification. Nat Clin Pract Oncol 4:295–304. doi: 10.1038/ncponc0794 PubMedCrossRefGoogle Scholar
  10. 10.
    de Bont JM, Packer RJ, Michiels EM, den Boer ML, Pieters R (2008) Biological background of pediatric medulloblastoma and ependymoma: a review from a translational research perspective. Neuro Oncol 10:1040–1060. doi: 10.1215/15228517-2008-059 PubMedCrossRefGoogle Scholar
  11. 11.
    Michiels EM, Weiss MM, Hoovers JM, Baak JP, Voute PA, Baas F, Hermsen MA (2002) Genetic alterations in childhood medulloblastoma analyzed by comparative genomic hybridization. J Pediatr Hematol Oncol 24:205–210PubMedCrossRefGoogle Scholar
  12. 12.
    Pan E, Pellarin M, Holmes E, Smirnov I, Misra A, Eberhart CG, Burger PC, Biegel JA, Feuerstein BG (2005) Isochromosome 17q is a negative prognostic factor in poor-risk childhood medulloblastoma patients. Clin Cancer Res 11:4733–4740. doi: 10.1158/1078-0432.CCR-04-0465 PubMedCrossRefGoogle Scholar
  13. 13.
    McCabe MG, Ichimura K, Liu L, Plant K, Backlund LM, Pearson DM, Collins VP (2006) High-resolution array-based comparative genomic hybridization of medulloblastomas and supratentorial primitive neuroectodermal tumors. J Neuropathol Exp Neurol 65:549–561PubMedCrossRefGoogle Scholar
  14. 14.
    Rossi MR, Conroy J, McQuaid D, Nowak NJ, Rutka JT, Cowell JK (2006) Array CGH analysis of pediatric medulloblastomas. Genes Chromosomes Cancer 45:290–303. doi: 10.1002/gcc.20292 PubMedCrossRefGoogle Scholar
  15. 15.
    Aldosari N, Bigner SH, Burger PC, Becker L, Kepner JL, Friedman HS, McLendon RE (2002) MYCC and MYCN oncogene amplification in medulloblastoma. A fluorescence in situ hybridization study on paraffin sections from the Children’s Oncology Group. Arch Pathol Lab Med 126:540–544. doi: 10.1043/0003-9985(2002)126<0540:MAMOAI>2.0.CO;2 PubMedGoogle Scholar
  16. 16.
    Kallioniemi A, Kallioniemi OP, Citro G, Sauter G, DeVries S, Kerschmann R, Caroll P, Waldman F (1995) Identification of gains and losses of DNA sequences in primary bladder cancer by comparative genomic hybridization. Genes Chromosomes Cancer 12:213–219PubMedCrossRefGoogle Scholar
  17. 17.
    Mantripragada KK, Buckley PG, Díaz de Ståhl T, Dumanski JP (2004) Genomic microarrays in the spotlight. Trends Genet 20:87–94PubMedCrossRefGoogle Scholar
  18. 18.
    Solinas-Toldo S, Lampel S, Stilgenbauer S, Nickolenko J, Benner A, Dohner H, Cremer T, Lichter P (1997) Matrix-based comparative genomic hybridization: biochips to screen for genomic imbalances. Genes Chromosomes Cancer 20:399–407PubMedCrossRefGoogle Scholar
  19. 19.
    Díaz de Ståhl T, Sandgren J, Piotrowski A, Nord H, Andersson R, Menzel U, Bogdan A, Thuresson AC, Poplawski A, von Tell D, Hansson CM, Elshafie AI, Elghazali G, Imreh S, Nordenskjold M, Upadhyaya M, Komorowski J, Bruder CE, Dumanski JP (2008) Profiling of copy number variations (CNVs) in healthy individuals from three ethnic groups using a human genome 32 K BAC-clone-based array. Hum Mutat 29:398–408. doi: 10.1002/humu.20659 PubMedCrossRefGoogle Scholar
  20. 20.
    Sambrook J, Fritsch E, Maniatis T (1989) Molecular Cloning; a Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  21. 21.
    Ameur A, Yankovski V, Enroth S, Spjuth O, Komorowski J (2006) The LCB Data Warehouse. Bioinformatics 22:1024–1026 (Oxford, England)PubMedCrossRefGoogle Scholar
  22. 22.
    Yang YH, Dudoit S, Luu P, Lin DM, Peng V, Ngai J, Speed TP (2002) Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. Nucleic Acids Res 30:e15PubMedCrossRefGoogle Scholar
  23. 23.
    Andersson R, Bruder CE, Piotrowski A, Menzel U, Nord H, Sandgren J, Hvidsten TR, Díaz de Ståhl T, Dumanski JP, Komorowski J (2008) A segmental maximum a posteriori approach to genome-wide copy number profiling. Bioinformatics 24:751–758. doi: 10.1093/bioinformatics/btn003 (Oxford, England)PubMedCrossRefGoogle Scholar
  24. 24.
    Olshen AB, Venkatraman ES, Lucito R, Wigler M (2004) Circular binary segmentation for the analysis of array-based DNA copy number data. Biostatistics 5:557–572PubMedCrossRefGoogle Scholar
  25. 25.
    Nord H, Segersten U, Sandgren J, Wester K, Busch C, Menzel U, Komorowski J, Dumanski JP, Malmström PU, Díaz de Ståhl T (2010) Focal amplifications are associated with high grade and recurrences in stage Ta bladder carcinoma. Int J Cancer 126:1390–1402. doi: 10.1002/ijc.24954 PubMedGoogle Scholar
  26. 26.
    Smyth GK (2005) Limma: linear models for microarray data. In: Gentleman VC R, Dudoit S, Irizarry R, Huber W (eds) Bioinformatics and computational biology solutions using r and bioconductor. Springer, New York, pp 397–420CrossRefGoogle Scholar
  27. 27.
    Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B 57:289–300Google Scholar
  28. 28.
    Dennis G Jr, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, Lempicki RA (2003) DAVID: database for annotation, visualization, and integrated discovery. Genome Biol 4:P3PubMedCrossRefGoogle Scholar
  29. 29.
    Saeed AI, Sharov V, White J, Li J, Liang W, Bhagabati N, Braisted J, Klapa M, Currier T, Thiagarajan M, Sturn A, Snuffin M, Resantsev A, Popov D, Ryltsov A, Kostukovich E, Borisovsky I, Lui Z, Vinsavich A, Trush V, Quackenbush J (2003) TM4: a free, opensource system for microarray data management and analysis. BioTechniques 34:374–378PubMedGoogle Scholar
  30. 30.
    Lo KC, Rossi MR, Eberhart CG, Cowell JK (2007) Genome wide copy number abnormalities in pediatric medulloblastomas as assessed by array comparative genome hybridization. Brain Pathol 17:282–296. doi: 10.1111/j.1750-3639.2007.00072.x PubMedCrossRefGoogle Scholar
  31. 31.
    Northcott PA, Nakahara Y, Wu X, Feuk L, Ellison DW, Croul S, Mack S, Kongkham PN, Peacock J, Dubuc A, Ra YS, Zilberberg K, McLeod J, Scherer SW, Sunil Rao J, Eberhart CG, Grajkowska W, Gillespie Y, Lach B, Grundy R, Pollack IF, Hamilton RL, Van Meter T, Carlotti CG, Boop F, Bigner D, Gilbertson RJ, Rutka JT, Taylor MD (2009) Multiple recurrent genetic events converge on control of histone lysine methylation in medulloblastoma. Nat Genet 41:465–472. doi: 10.1038/ng.336 PubMedCrossRefGoogle Scholar
  32. 32.
    Fattet S, Haberler C, Legoix P, Varlet P, Lellouch-Tubiana A, Lair S, Manie E, Raquin MA, Bours D, Carpentier S, Barillot E, Grill J, Doz F, Puget S, Janoueix-Lerosey I, Delattre O (2009) β-catenin status in paediatric medulloblastomas: correlation of immunohistochemical expression with mutational status, genetic profiles, and clinical characteristics. J Pathol 218:86–94. doi: 10.1002/path.2514 PubMedCrossRefGoogle Scholar
  33. 33.
    Ellison DW, Dalton J, Kocak M, Nicholson SL, Fraga C, Neale G, Kenney AM, Brat DJ, Perry A, Yong WH, Taylor RE, Bailey S, Clifford SC, Gilbertson RJ (2011) Medulloblastoma: clinicopathological correlates of SHH, WNT, and non-SHH/WNT molecular subgroups. Acta Neuropathol 121:381–396. doi: 10.1007/s00401-011-0800-8 PubMedCrossRefGoogle Scholar
  34. 34.
    Ellison DW, Onilude OE, Lindsey JC, Lusher ME, Weston CL, Taylor RE, Pearson AD, Clifford SC (2005) β-Catenin status predicts a favorable outcome in childhood medulloblastoma: the United Kingdom Children’s Cancer Study Group Brain Tumour Committee. J Clin Oncol 23:7951–7957. doi: 10.1200/JCO.2005.01.5479 PubMedCrossRefGoogle Scholar
  35. 35.
    Northcott PA, Korshunov A, Witt H, Hielscher T, Eberhart CG, Mack S, Bouffet E, Clifford SC, Hawkins CE, French P, Rutka JT, Pfister S, Taylor MD (2011) Medulloblastoma comprises four distinct molecular variants. J Clin Oncol 29:1408–1414. doi: 10.1200/JCO.2009.27.4324 PubMedCrossRefGoogle Scholar
  36. 36.
    Thompson MC, Fuller C, Hogg TL, Dalton J, Finkelstein D, Lau CC, Chintagumpala M, Adesina A, Ashley DM, Kellie SJ, Taylor MD, Curran T, Gajjar A, Gilbertson RJ (2006) Genomics identifies medulloblastoma subgroups that are enriched for specific genetic alterations. J Clin Oncol 24:1924–1931. doi: 10.1200/JCO.2005.04.4974 PubMedCrossRefGoogle Scholar
  37. 37.
    Cho YJ, Tsherniak A, Tamayo P, Santagata S, Ligon A, Greulich H, Berhoukim R, Amani V, Goumnerova L, Eberhart CG, Lau CC, Olson JM, Gilbertson RJ, Gajjar A, Delattre O, Kool M, Ligon K, Meyerson M, Mesirov JP, Pomeroy SL (2011) Integrative genomic analysis of medulloblastoma identifies a molecular subgroup that drives poor clinical outcome. J Clin Oncol 29:1424–1430. doi: 10.1200/JCO.2010.28.5148 PubMedCrossRefGoogle Scholar
  38. 38.
    Kool M, Koster J, Bunt J, Hasselt NE, Lakeman A, van Sluis P, Troost D, Meeteren NS, Caron HN, Cloos J, Mrsic A, Ylstra B, Grajkowska W, Hartmann W, Pietsch T, Ellison D, Clifford SC, Versteeg R (2008) Integrated genomics identifies five medulloblastoma subtypes with distinct genetic profiles, pathway signatures and clinicopathological features. PLoS ONE 3:e3088. doi: 10.1371/journal.pone.0003088 PubMedCrossRefGoogle Scholar
  39. 39.
    Clifford SC, Lusher ME, Lindsey JC, Langdon JA, Gilbertson RJ, Straughton D, Ellison DW (2006) Wnt/Wingless pathway activation and chromosome 6 loss characterize a distinct molecular sub-group of medulloblastomas associated with a favorable prognosis. Cell Cycle 5:2666–2670PubMedCrossRefGoogle Scholar
  40. 40.
    Northcott PA, Van Meter T, Eberhart C, Weiss W, Rutka JT, Gupta N, Korshunov A, French P, Kros J, Michiels E, Kloosterhof N, Hauser P, Montange MF, Jouvet A, Bouffet E, Jung S, Kim S, Wang K, Cho B, Di Rocco C, Massimi L, Leonard J, Scheurlen W, Pfister S, Robinson S (2010) Genomic of medulloblastoma. Abstracts from the 15th Annual Meeting of the Society for Neuro-Oncology (SNO), Montreal, Quebec, Canada November 18–21: iv61–iv68Google Scholar
  41. 41.
    Mizunuma H, Miyazawa J, Sanada K, Imai K (2003) The LIM-only protein, LMO4, and the LIM domain-binding protein, LDB1, expression in squamous cell carcinomas of the oral cavity. Br J Cancer 88:1543–1548PubMedCrossRefGoogle Scholar
  42. 42.
    Montanez-Wiscovich ME, Seachrist DD, Landis MD, Visvader J, Andersen B, Keri RA (2009) LMO4 is an essential mediator of ErbB2/HER2/Neu-induced breast cancer cell cycle progression. Oncogene 28:3608–3618. doi: 10.1038/onc.2009.221 PubMedCrossRefGoogle Scholar
  43. 43.
    Grzeszkiewicz TM, Lindner V, Chen N, Lam SC, Lau LF (2002) The angiogenic factor cysteine-rich 61 (CYR61, CCN1) supports vascular smooth muscle cell adhesion and stimulates chemotaxis through integrin alpha(6)beta(1) and cell surface heparan sulfate proteoglycans. Endocrinology 143:1441–1450PubMedCrossRefGoogle Scholar
  44. 44.
    Vibhakar R, Foltz G, Yoon JG, Field L, Lee H, Ryu GY, Pierson J, Davidson B, Madan A (2007) Dickkopf-1 is an epigenetically silenced candidate tumor suppressor gene in medulloblastoma. Neuro Oncol 9:135–144. doi: 10.1215/15228517-2006-038 PubMedCrossRefGoogle Scholar
  45. 45.
    de Bont JM, Kros JM, Passier MM, Reddingius RE, Sillevis Smitt PA, Luider TM, den Boer ML, Pieters R (2008) Differential expression and prognostic significance of SOX genes in pediatric medulloblastoma and ependymoma identified by microarray analysis. Neuro Oncol 10:648–660. doi: 10.1215/15228517-2008-032 PubMedCrossRefGoogle Scholar
  46. 46.
    Herms J, Neidt I, Luscher B, Sommer A, Schurmann P, Schroder T, Bergmann M, Wilken B, Probst-Cousin S, Hernaiz-Driever P, Behnke J, Hanefeld F, Pietsch T, Kretzschmar HA (2000) C-MYC expression in medulloblastoma and its prognostic value. Int J Cancer 89:395–402PubMedCrossRefGoogle Scholar
  47. 47.
    de Bont JM, van Doorn J, Reddingius RE, Graat GH, Passier MM, den Boer ML, Pieters R (2008) Various components of the insulin-like growth factor system in tumor tissue, cerebrospinal fluid and peripheral blood of pediatric medulloblastoma and ependymoma patients. Int J Cancer 123:594–600PubMedCrossRefGoogle Scholar
  48. 48.
    Mendrzyk F, Radlwimmer B, Joos S, Kokocinski F, Benner A, Stange DE, Neben K, Fiegler H, Carter NP, Reifenberger G, Korshunov A, Lichter P (2005) Genomic and protein expression profiling identifies CDK6 as novel independent prognostic marker in medulloblastoma. J Clin Oncol 23:8853–8862PubMedCrossRefGoogle Scholar
  49. 49.
    Thomassen M, Tan Q, Kruse TA (2009) Gene expression meta-analysis identifies chromosomal regions and candidate genes involved in breast cancer metastasis. Breast Cancer Res Treat 113:239–249PubMedCrossRefGoogle Scholar
  50. 50.
    McCabe MG, Ichimura K, Pearson DM, Liu L, Clifford SC, Ellison DW, Collins VP (2009) Novel mechanisms of gene disruption at the medulloblastoma isodicentric 17p11 breakpoint. Genes Chromosomes Cancer 48:121–131. doi: 10.1002/gcc.20625 PubMedCrossRefGoogle Scholar
  51. 51.
    Cogen PH (1991) Prognostic significance of molecular genetic markers in childhood brain tumors. Pediatr Neurosurg 17:245–250PubMedCrossRefGoogle Scholar
  52. 52.
    Gilbertson R, Wickramasinghe C, Hernan R, Balaji V, Hunt D, Jones-Wallace D, Crolla J, Perry R, Lunec J, Pearson A, Ellison D (2001) Clinical and molecular stratification of disease risk in medulloblastoma. Br J Cancer 85:705–712PubMedCrossRefGoogle Scholar
  53. 53.
    Gulino A, Arcella A, Giangaspero F (2008) Pathological and molecular heterogeneity of medulloblastoma. Curr Opin Oncol 20:668–675PubMedCrossRefGoogle Scholar
  54. 54.
    Ellison DW, Kocak M, Dalton J, Megahed H, Lusher ME, Ryan SL, Zhao W, Nicholson SL, Taylor RE, Bailey S, Clifford SC (2011) Definition of disease-risk stratification groups in childhood medulloblastoma using combined clinical, pathologic, and molecular variables. J Clin Oncol 29:1400–1407. doi: 10.1200/JCO.2010.30.2810 PubMedCrossRefGoogle Scholar
  55. 55.
    McCabe MG, Backlund LM, Leong HS, Ichimura K, Collins VP (2011) Chromosome 17 alterations identify good-risk and poor-risk tumors independently of clinical factors in medulloblastoma. Neuro Oncol 13:376–383. doi: 10.1093/neuonc/noq192 PubMedCrossRefGoogle Scholar
  56. 56.
    Chen X, Kremmer E, Gouzy MF, Clausen E, Starke M, Wollner K, Pfister G, Hartmann A, Kramer PM (2010) Development and characterization of rat monoclonal antibodies for N-acylated homoserine lactones. Anal Bioanal Chem 398:2655–2667. doi: 10.1007/s00216-010-4017-9 PubMedCrossRefGoogle Scholar
  57. 57.
    Gokhale A, Kunder R, Goel A, Sarin R, Moiyadi A, Shenoy A, Mamidipally C, Noronha S, Kannan S, Shirsat NV (2010) Distinctive microRNA signature of medulloblastomas associated with the WNT signaling pathway. J Cancer Res Ther 6:521–529. doi: 10.4103/0973-1482.77072 PubMedCrossRefGoogle Scholar
  58. 58.
    Smyth GK (2004) Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 3:Article3. doi: 10.2202/1544-6115.1027
  59. 59.
    Lonnstedt I, Britton T (2005) Hierarchical Bayes models for cDNA microarray gene expression. Biostatistics 6:279–291. doi: 10.1093/biostatistics/kxi009 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2011

Authors and Affiliations

  • Helena Nord
    • 1
  • Susan Pfeifer
    • 2
  • Pelle Nilsson
    • 3
  • Johanna Sandgren
    • 4
  • Svetlana Popova
    • 1
  • Bo Strömberg
    • 2
  • Irina Alafuzoff
    • 1
  • Monica Nistér
    • 4
  • Teresita Díaz de Ståhl
    • 4
    Email author
  1. 1.Department of Immunology, Genetics and Pathology, Rudbeck LaboratoryUppsala UniversityUppsalaSweden
  2. 2.Department of Women’s and Children’s HealthUppsala University, Uppsala University HospitalUppsalaSweden
  3. 3.Section of Neurosurgery Department of NeuroscienceUppsala University, Uppsala University HospitalUppsalaSweden
  4. 4.Department of Oncology-Pathology, Karolinska Institutet, Cancer Center KarolinskaKarolinska University Hospital in SolnaStockholmSweden

Personalised recommendations