Journal of Neuro-Oncology

, Volume 106, Issue 3, pp 637–642

Dosimetric comparison of Linac-based (BrainLAB®) and robotic radiosurgery (CyberKnife®) stereotactic system plans for acoustic schwannoma

  • Debnarayan Dutta
  • S. Balaji Subramanian
  • V. Murli
  • H. Sudahar
  • P. G. Gopalakrishna Kurup
  • Mahadev Potharaju
Clinical Study – Patient Study


A dosimetric comparison of linear accelerator (LA)-based (BrainLAB) and robotic radiosurgery (RS) (CyberKnife) systems for acoustic schwannoma (Acoustic neuroma, AN) was carried out. Seven patients with radiologically confirmed unilateral AN were planned with both an LA-based (BrainLAB) and robotic RS (CyberKnife) system using the same computed tomography (CT) dataset and contours. Gross tumour volume (GTV) was contoured on post-contrast magnetic resonance imaging (MRI) scan [planning target volume (PTV) margin 2 mm]. Planning and calculation were done with appropriate calculation algorithms. The prescribed isodose in both systems was considered adequate to cover at least 95% of the contoured target. Plan evaluations were done by examining the target coverage by the prescribed isodose line, and high- and low-dose volumes. Isodose plans and dose volume histograms generated by the two systems were compared. There was no statistically significant difference between the contoured volumes between the systems. Tumour volumes ranged from 380 to 3,100 mm3. Dose prescription was 13–15 Gy in single fraction (median prescribed isodose 85%). There were no significant differences in conformity index (CI) (0.53 versus 0.58; P = 0.225), maximum brainstem dose (4.9 versus 4.7 Gy; P = 0.935), 2.5-Gy volume (39.9 versus 52.3 cc; P = 0.238) or 5-Gy volume (11.8 versus 16.8 cc; P = 0.129) between BrainLAB and CyberKnife system plans. There were statistically significant differences in organs at risk (OAR) doses, such as mean cochlear dose (6.9 versus 5.4 Gy; P = 0.001), mean mesial temporal dose (2.6 versus 1.7 Gy; P = 0.07) and high-dose (10 Gy) volume (3.2 versus 5.2 cc; P = 0.017). AN patients planned with the CyberKnife system had superior OAR (cochlea and mesial temporal lobe) sparing compared with those planned with the Linac-based system. Further evaluation of these findings in prospective studies with clinical correlation will provide actual clinical benefit from the dosimetric superiority of CyberKnife.


Acoustic schwannoma Stereotactic radiosurgery Robotic radiosurgery Linear accelerator-based radiosurgery 


  1. 1.
    Propp JM, McCarthy BJ, Davis FG, Preston-Martin S (2006) Descriptive epidemiology of vestibular schwannomas. Neuro Oncol 8:1–11PubMedCrossRefGoogle Scholar
  2. 2.
    Leksell L (1971) A note on the treatment of acoustic tumors. Acta Chir Scand 137:763–765PubMedGoogle Scholar
  3. 3.
    Myrseth E, Moller P, Pedersen PH, Lund-Johansen M (2009) Vestibular schwannoma: surgery or gamma knife radiosurgery? A prospective, nonrandomized study. 661-653 Neurosurgery 64:654–661Google Scholar
  4. 4.
    Nikolopoulos TP, O’Donoghue GM (2002) Acoustic neuroma management: an evidence-based medicine approach. Otol Neurotol 23:534–541PubMedCrossRefGoogle Scholar
  5. 5.
    Pollock BE, Driscoll CL, Foote RL, Link MJ, Gorman DA, Bauch CD, Mandrekar JN, Krecke KN, Johnson CH (2006) Patient outcomes after vestibular schwannoma management: a prospective comparison of microsurgical resection and stereotactic radiosurgery. Neurosurgery 59:77–85PubMedCrossRefGoogle Scholar
  6. 6.
    Kaylie DM, Horgan MJ, Delashaw JB, McMenomey SO (2000) A meta-analysis comparing outcomes of microsurgery and gamma knife radiosurgery. Laryngoscope 110:1850–1856PubMedCrossRefGoogle Scholar
  7. 7.
    Kondziolka D, Lunsford LD, McLaughlin MR (1998) Long-term outcomes after radiosurgery for acoustic neuromas. N Engl J Med 339:1426–1433PubMedCrossRefGoogle Scholar
  8. 8.
    Abram S, Rosenblatt P, Holcomb S (2007) Stereotactic radiation techniques in the treatment of acoustic schwannomas. Otolaryngol Clin North Am 40:571–588PubMedCrossRefGoogle Scholar
  9. 9.
    Hempel JM, Hempel E, Wowra B, Schichor Ch, Muacevic A, Riederer A (2006) Functional outcome after gamma knife treatment in vestibular schwannoma. Eur Arch Otorhinolaryngol 263(8):714–718PubMedCrossRefGoogle Scholar
  10. 10.
    Tamura M, Murata N, Hayashi M, Roche PH, Régis J (2008) Facial nerve function insufficiency after radiosurgery versus microsurgery. Prog Neurol Surg 21:108–118PubMedCrossRefGoogle Scholar
  11. 11.
    Régis J, Delsanti C, Roche PH, Thomassin JM, Pellet W (2004) Functional outcomes of radiosurgical treatment of vestibular schwannomas: 1000 successive cases and review of the literature. Neurochirurgie 50(2–3 Pt 2):301–311Google Scholar
  12. 12.
    Karpinos M, Teh BS, Zeck O, Carpenter LS, Phan C, Mai WY, Lu HH, Chiu JK, Butler EB, Gormley WB, Woo SY (2002) Treatment of acoustic neuroma: stereotactic radiosurgery vs. microsurgery. Int J Radiat Oncol Biol Phys 54:1410–1421PubMedCrossRefGoogle Scholar
  13. 13.
    Paek SH, Chung HT, Jeong SS, Park CK, Kim CY, Kim JE, Kim DG, Jung HW (2005) Hearing preservation after gamma knife stereotactic radiosurgery of vestibular schwannoma. Cancer 104:580–590PubMedCrossRefGoogle Scholar
  14. 14.
    Miller RC, Foote RL, Coffey RJ, Sargent DJ, Gorman DA, Schomberg PJ, Kline RW (1999) Decrease in cranial nerve complications after radiosurgery for acoustic neuromas: a prospective study of dose and volume. Int J Radiat Oncol Biol Phys 43:305–311PubMedCrossRefGoogle Scholar
  15. 15.
    Yu C, Aho C, Liu C, Giannotta S (2006) Dosimetric comparison of gamma knife vs. cyberknife radiosurgery for patients with tumors near optic apparatus. Med Phys 33:2091Google Scholar
  16. 16.
    Meyers CA, Brown PD (2006) Role and relevance of neurocognitive assessment in clinical trials of patients with CNS tumors. J Clin Oncol 24(8):1305–1309PubMedCrossRefGoogle Scholar
  17. 17.
    Jalali R, Mullick I, Dutta D, Gupta T, Sarin R (2010) Age and radiotherapy doses to left temporal lobe predict neurocognitive outcomes in young patients with benign and low grade brain tumours: data from a prospective trial of stereotactic conformal radiation therapy. Int J Radiat Oncol Biol Phys 77(4):974–979PubMedCrossRefGoogle Scholar
  18. 18.
    Tamura M, Carron R, Yomo S, Arkha Y, Muraciolle X, Porcheron D, Thomassin JM, Roche PH, Régis J (2009) Hearing preservation after gamma knife radiosurgery for vestibular schwannomas presenting with high-level hearing. Neurosurgery 64(2):289–296PubMedCrossRefGoogle Scholar
  19. 19.
    Kano H, Kondziolka D, Khan A, Flickinger JC, Lunsford LD (2009) Predictors of hearing preservation after stereotactic radiosurgery for acoustic neuroma. J Neurosurg 111(4):863–873PubMedCrossRefGoogle Scholar
  20. 20.
    Chera BS, Amdur RJ, Robert J, Patel P, Mendenhall WM (2009) A radiation oncologist’s guide to contouring the hippocampus. Am J Clin Oncol 32(1):20–22PubMedCrossRefGoogle Scholar
  21. 21.
    Romanelli P, Ansche DJ (2006) Radiosurgery for epilepsy. Lancet Neurol 5(7):613–620PubMedCrossRefGoogle Scholar
  22. 22.
    Régis J, Bartolomei F, Rey M, Hayashi M, Chauvel P, Peragut JC (2000) Gamma knife surgery for mesial temporal lobe epilepsy. J Neurosurg 93 Suppl 3:141–146Google Scholar
  23. 23.
    Rheims S, Fischer C, Ryvlin P, Isnard J, Guenot M, Tamura M, Regis J, Mauguiere F (2008) Long-term outcome of gamma-knife surgery in temporal lobe epilepsy. Epilepsy Res 80(1):23–29PubMedCrossRefGoogle Scholar
  24. 24.
    Kapoor S, Batra S, Carson K, Shuck J, Kharkar S, Gandhi R,Jackson J, Wemmer J, Terezakis S, Shokek O, Kleinberg L, Rigamonti D (2010) Long-term outcomes of vestibular schwannomas treated with fractionated stereotactic radiotherapy: an institutional experience. Int J Radiat Oncol Biol Phys [PMID: 20884130]Google Scholar
  25. 25.
    Lutz W, Winston KR, Maleki N (1988) A system for stereotactic radiosurgery with a linear accelerator. Int J Radiat Oncol Biol Phys 14:373–381PubMedCrossRefGoogle Scholar
  26. 26.
    Kilby W, Dooley JR, Kuduvalli G, Sayeh S, Maurer Jr SCR (2010) The CyberKnife® Robotic Radiosurgery System in 2010. Technol Cancer Res Treat ISSN 9(5):1533–1546Google Scholar
  27. 27.
    Munshi A (2009) Randomized study way out? Randomised controlled trials: on the way out? Clin Oncol (R Coll Radiol) 21(5):427–428CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2011

Authors and Affiliations

  • Debnarayan Dutta
    • 1
  • S. Balaji Subramanian
    • 1
  • V. Murli
    • 2
  • H. Sudahar
    • 2
  • P. G. Gopalakrishna Kurup
    • 2
  • Mahadev Potharaju
    • 1
  1. 1.Department of Radiation OncologyApollo Speciality HospitalChennaiIndia
  2. 2.Department of Medical PhysicsApollo Speciality HospitalChennaiIndia

Personalised recommendations