Journal of Neuro-Oncology

, Volume 106, Issue 2, pp 281–290 | Cite as

Modulation of pediatric brain tumor autophagy and chemosensitivity

  • Jean M. Mulcahy Levy
  • Andrew ThorburnEmail author
Laboratory Investigation - Human/Animal Tissue


Brain and spinal tumors are the second most common malignancies in childhood after leukemia, and they remain the leading cause of death from childhood cancer. Autophagy is a catabolic cellular process that is thought to regulate chemosensitivity, however its role in pediatric tumors is unknown. Here we present studies in pediatric medulloblastoma cell lines (DAOY, ONS76) and atypical teratoid/rhabdoid tumor cell lines (BT-16, BT-12) to test this role. Autophagy was inhibited using siRNA against autophagy-related genes ATG12 and ATG7 or pharmacologically induced or inhibited using rapamycin and chloroquine to test the effect of autophagy on chemosensitivity. Autophagic flux was measured using Western blot analysis of LC3-II and p62 and cell viability was determined using MTS assays and clonogenic growth. We found that when pediatric brain tumor cells under starvation stress, exposed to known autophagy inducers such as rapamycin, or treated with current chemotherapeutics (lomustine, cisplatin), all stimulate autophagy. Silencing ATG12 and ATG7 or exposure to a known autophagy inhibitor, chloroquine, could inhibit this autophagy increase; however, the effect of autophagy on tumor cell killing was small. These results may have clinical relevance in the future planning of therapeutic regimens for pediatric brain tumors.


Autophagy Pediatric Medulloblastoma Atypical teratoid/rhabdoid tumor Brain tumor Chemosensitivity 



JM Mulcahy Levy is supported by a St. Baldrick’s Foundation Fellowship. Additional support provided by The Morgan Adams Foundation and NIH grant CA150925. We thank Dr. Rajeev Vibhakar for providing the ONS76 cell line and Dr. Peter Houghton for providing the BT-16 and BT-12 cell lines.


  1. 1.
    Mizushima N (2007) Autophagy process and function. Genes Dev 21(22):2861–2873PubMedCrossRefGoogle Scholar
  2. 2.
    Qu X et al (2003) Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J Clin Invest 112(12):1809–1820PubMedGoogle Scholar
  3. 3.
    Yue Z et al (2003) Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc Natl Acad Sci USA 100(25):15077–15082PubMedCrossRefGoogle Scholar
  4. 4.
    Marino G et al (2007) Tissue-specific autophagy alterations and increased tumorigenesis in mice deficient in Atg4C/autophagin-3. J Biol Chem 282(25):18573–18583PubMedCrossRefGoogle Scholar
  5. 5.
    Takahashi Y et al (2007) Bif-1 interacts with Beclin 1 through UVRAG and regulates autophagy and tumorigenesis. Nat Cell Biol 9(10):1142–1151PubMedCrossRefGoogle Scholar
  6. 6.
    Liang C et al (2006) Autophagic and tumour suppressor activity of a novel Beclin1-binding protein UVRAG. Nat Cell Biol 8(7):688–699PubMedCrossRefGoogle Scholar
  7. 7.
    Maiuri MC et al (2009) Control of autophagy by oncogenes and tumor suppressor genes. Cell Death Differ 16(1):87–93PubMedCrossRefGoogle Scholar
  8. 8.
    Degenhardt K et al (2006) Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell 10(1):51–64PubMedCrossRefGoogle Scholar
  9. 9.
    Kenific CM, Thorburn A, Debnath J (2010) Autophagy and metastasis: another double-edged sword. Curr Opin Cell Biol 22(2):241–245PubMedCrossRefGoogle Scholar
  10. 10.
    Takamura A et al (2011) Autophagy-deficient mice develop multiple liver tumors. Genes Dev 25(8):795–800PubMedCrossRefGoogle Scholar
  11. 11.
    Hippert MM, O’Toole PS, Thorburn A (2006) Autophagy in cancer: good, bad, or both? Cancer Res 66(19):9349–9351PubMedCrossRefGoogle Scholar
  12. 12.
    Kondo Y et al (2005) The role of autophagy in cancer development and response to therapy. Nat Rev Cancer 5(9):726–734PubMedCrossRefGoogle Scholar
  13. 13.
    Levine B, Kroemer G (2008) Autophagy in the pathogenesis of disease. Cell 132(1):27–42PubMedCrossRefGoogle Scholar
  14. 14.
    Garcia-Escudero V, Gargini R (2008) Autophagy induction as an efficient strategy to eradicate tumors. Autophagy 4(7):923–925PubMedGoogle Scholar
  15. 15.
    Lin MH, Liu SY, Liu YC (2008) Autophagy induction by a natural ingredient of areca nut. Autophagy 4(7):967–968PubMedGoogle Scholar
  16. 16.
    Turcotte S, Sutphin PD, Giaccia AJ (2008) Targeted therapy for the loss of von Hippel–Lindau in renal cell carcinoma: a novel molecule that induces autophagic cell death. Autophagy 4(7):944–946PubMedGoogle Scholar
  17. 17.
    Thorburn J et al (2009) Autophagy regulates selective HMGB1 release in tumor cells that are destined to die. Cell Death Differ 16(1):175–183PubMedCrossRefGoogle Scholar
  18. 18.
    Amaravadi RK et al (2007) Autophagy inhibition enhances therapy-induced apoptosis in a Myc-induced model of lymphoma. J Clin Invest 117(2):326–336PubMedCrossRefGoogle Scholar
  19. 19.
    Carew JS et al (2007) Targeting autophagy augments the anticancer activity of the histone deacetylase inhibitor SAHA to overcome Bcr-Abl-mediated drug resistance. Blood 110(1):313–322PubMedCrossRefGoogle Scholar
  20. 20.
    Park MA et al (2008) Regulation of autophagy by ceramide-CD95-PERK signaling. Autophagy 4(7):929–931PubMedGoogle Scholar
  21. 21.
    Wu H et al (2006) Elongation factor-2 kinase regulates autophagy in human glioblastoma cells. Cancer Res 66(6):3015–3023PubMedCrossRefGoogle Scholar
  22. 22.
    Mizushima N, Yoshimori T (2007) How to interpret LC3 immunoblotting. Autophagy 3(6):542–545PubMedGoogle Scholar
  23. 23.
    Ito H et al (2005) Radiation-induced autophagy is associated with LC3 and its inhibition sensitizes malignant glioma cells. Int J Oncol 26(5):1401–1410PubMedGoogle Scholar
  24. 24.
    Wu H et al (2009) Silencing of elongation factor-2 kinase potentiates the effect of 2-deoxy-d-glucose against human glioma cells through blunting of autophagy. Cancer Res 69(6):2453–2460PubMedCrossRefGoogle Scholar
  25. 25.
    Levy JM, Thorburn A (2011) Targeting autophagy during cancer therapy to improve clinical outcomes. Pharmacol Ther 131(1):130–141PubMedCrossRefGoogle Scholar
  26. 26.
    Komatsu M et al (2006) Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441(7095):880–884PubMedCrossRefGoogle Scholar
  27. 27.
    Fimia GM et al (2007) Ambra1 regulates autophagy and development of the nervous system. Nature 447(7148):1121–1125PubMedGoogle Scholar
  28. 28.
    Shingu T et al (2009) Inhibition of autophagy at a late stage enhances imatinib-induced cytotoxicity in human malignant glioma cells. Int J Cancer 124(5):1060–1071PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2011

Authors and Affiliations

  1. 1.Department of PediatricsUniversity of ColoradoAuroraUSA
  2. 2.Department of PharmacologyUniversity of ColoradoAuroraUSA

Personalised recommendations