Advertisement

Journal of Neuro-Oncology

, Volume 106, Issue 2, pp 217–224 | Cite as

MicroRNAs involved in the EGFR/PTEN/AKT pathway in gliomas

  • Yingyi Wang
  • Xiefeng Wang
  • Junxia Zhang
  • Guan Sun
  • Hui Luo
  • Chunsheng Kang
  • Peiyu Pu
  • Tao Jiang
  • Ning Liu
  • Yongping You
Topic Review

Abstract

Gliomas are the most common type of malignant primary brain tumor. Despite advances in surgery, radiation therapy, and chemotherapy, the prognosis of patients with gliomas has not significantly improved. MicroRNAs (miRNAs), a class of non-coding RNAs, 21–25 nucleotides long, negatively regulate the expression of target genes by interacting with specific sites in mRNAs, and play a critical role in the development of gliomas. The EGFR/PTEN/AKT pathway is a promising target for anti-glioma therapy. Recent studies have showed that regulation of the EGFR/PTEN/AKT pathway by miRNAs plays a major role in glioma progression, indicating a novel way to investigate the tumorigenesis, diagnosis, and therapy of gliomas. Here, we focus on recent findings of miRNAs with respect to the EGFR/PTEN/AKT pathway in gliomas.

Keywords

MicroRNA Glioma EGFR PTEN AKT 

Notes

Acknowledgments

This work was supported by the China Natural Science Foundation (30872657, 30971136, and 81072078), Natural Science Foundation of Jiangsu Province (2008475 and 2010580), Scientific Program of Ministry of Health (W2011BX009), Program for Development of Innovative Research Team in the First Affiliated Hospital of NJMU, and A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

References

  1. 1.
    Stewart LA (2002) Chemotherapy in adult high-grade glioma: a systematic review and meta-analysis of individual patient data from 12 randomised trials. Lancet 359:1011–1018PubMedCrossRefGoogle Scholar
  2. 2.
    Esquela-Kerscher A, Slack FJ (2006) Oncomirs-microRNAs with a role in cancer. Nat Rev Cancer 6:259–269PubMedCrossRefGoogle Scholar
  3. 3.
    Garzon R, Fabbri M, Cimmino A, Calin GA, Croce CM (2006) MicroRNA expression and function in cancer. Trends Mol Med 12:580–587PubMedCrossRefGoogle Scholar
  4. 4.
    Garzon R, Calin GA, Croce CM (2009) MicroRNAs in cancer. Annu Rev Med 60:167–179PubMedCrossRefGoogle Scholar
  5. 5.
    Wells A (1999) EGF receptor. Int J Biochem Cell Biol 31):637–643PubMedCrossRefGoogle Scholar
  6. 6.
    Scagliotti GV, Selvaggi G, Novello S, Hirsch FR (2004) The biology of epidermal growth factor receptor in lung cancer. Clin Cancer Res 10:4227s–4232sGoogle Scholar
  7. 7.
    Li J, Yen C, Liaw D, Podsypanina K, Bose S, Wang SI, Puc J, Miliaresis C, Rodgers L, McCombie R, Bigner SH, Giovanella BC, Ittmann M, Tycko B, Hibshoosh H, Wigler MH, Parsons R (1997) PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 275:1943–1947PubMedCrossRefGoogle Scholar
  8. 8.
    Myers MP, Stolarov JP, Eng C, Li J, Wang SI, Wigler MH, Parsons R, Tonks NK (1997) P-TEN, the tumor suppressor from human chromosome 10q23, is a dual-specificity phosphatase. Proc Natl Acad Sci USA 94:9052–9057PubMedCrossRefGoogle Scholar
  9. 9.
    Maehama T, Dixon JE (1998) The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem 273:13375–13378PubMedCrossRefGoogle Scholar
  10. 10.
    Engelman JA, Luo J, Cantley LC (2006) The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat Rev Genet 7:606–619PubMedCrossRefGoogle Scholar
  11. 11.
    Hresko RC, Murata H, Mueckler M (2003) Phosphoinositide-dependent kinase-2 is a distinct protein kinase enriched in a novel cytoskeletal fraction associated with adipocyte plasma membranes. J Biol Chem 278:21615–21622PubMedCrossRefGoogle Scholar
  12. 12.
    Ekstrand AJ, Sugawa N, James CD, Collins VP (1992) Amplified and rearranged epidermal growth factor receptor genes in human glioblastomas reveal deletions of sequences encoding portions of the N- and/or C-terminal tails. Proc Natl Acad Sci USA 89:4309–4313PubMedCrossRefGoogle Scholar
  13. 13.
    Ohgaki H, Dessen P, Jourde B, Horstmann S, Nishikawa T, Di Patre PL, Burkhard C, Schuler D, Probst-Hensch NM, Maiorka PC, Baeza N, Pisani P, Yonekawa Y, Yasargil MG, Lütolf UM, Kleihues P (2004) Genetic pathways to glioblastoma: a population-based study. Cancer Res 64:6892–6899PubMedCrossRefGoogle Scholar
  14. 14.
    Watanabe K, Tachibana O, Sata K, Yonekawa Y, Kleihues P, Ohgaki H (1996) Overexpression of the EGF receptor and p53 mutations are mutually exclusive in the evolution of primary and secondary glioblastomas. Brain Pathol 6:217–223PubMedCrossRefGoogle Scholar
  15. 15.
    Shinojima N, Tada K, Shiraishi S, Kamiryo T, Kochi M, Nakamura H, Makino K, Saya H, Hirano H, Kuratsu J, Oka K, Ishimaru Y, Ushio Y (2003) Prognostic value of epidermal growth factor receptor in patients with glioblastoma multiforme. Cancer Res 63:6962–6970PubMedGoogle Scholar
  16. 16.
    Karpel-Massler G, Schmidt U, Unterberg A, Halatsch ME (2009) Therapeutic inhibition of the epidermal growth factor receptor in high-grade gliomas: where do we stand? Mol Cancer Res 7:1000–1012PubMedCrossRefGoogle Scholar
  17. 17.
    Lo HW (2010) EGFR-targeted therapy in malignant glioma: novel aspects and mechanisms of drug resistance. Curr Mol Pharmacol 3:37–52PubMedGoogle Scholar
  18. 18.
    Rich JN, Reardon DA, Peery T, Dowell JM, Quinn JA, Penne KL, Wikstrand CJ, Van Duyn LB, Dancey JE, McLendon RE, Kao JC, Stenzel TT, Ahmed Rasheed BK, Tourt-Uhlig SE, Herndon JE 2nd, Vredenburgh JJ, Sampson JH, Friedman AH, Bigner DD, Friedman HS (2004) Phase II trial of gefitinib in recurrent glioblastoma. J Clin Oncol 22:133–142PubMedCrossRefGoogle Scholar
  19. 19.
    Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, Scheithauer BW, Kleihues P (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114:97–109PubMedCrossRefGoogle Scholar
  20. 20.
    Smith JS, Tachibana I, Passe SM, Huntley BK, Borell TJ, Iturria N, O’Fallon JR, Schaefer PL, Scheithauer BW, James CD, Buckner JC, Jenkins RB (2001) PTEN mutation, EGFR amplification, and outcome in patients with anaplastic astrocytoma and glioblastoma multiforme. J Natl Cancer Inst 93:1246–1256PubMedCrossRefGoogle Scholar
  21. 21.
    Sano T, Lin H, Chen X, Langford LA, Koul D, Bondy ML, Hess KR, Myers JN, Hong YK, Yung WK, Steck PA (1999) Differential expression of MMAC/PTEN in glioblastoma multiforme: relationship to localization and prognosis. Cancer Res 59:1820–1824PubMedGoogle Scholar
  22. 22.
    Mayo LD, Dixon JE, Durden DL, Tonks NK, Donner DB (2002) PTEN protects p53 from Mdm2 and sensitizes cancer cells to chemotherapy. J Biol Chem 277:5484–5489PubMedCrossRefGoogle Scholar
  23. 23.
    Wick W, Furnari FB, Naumann U, Cavenee WK, Weller M (1999) PTEN gene transfer in human malignant glioma: sensitization to irradiation and CD95L-induced apoptosis. Oncogene 18:3936–3943PubMedCrossRefGoogle Scholar
  24. 24.
    Gallia GL, Rand V, Siu IM, Eberhart CG, James CD, Marie SK, Oba-Shinjo SM, Carlotti CG, Caballero OL, Simpson AJ, Brock MV, Massion PP, Carson BS Sr, Riggins GJ (2006) PIK3CA gene mutations in pediatric and adult glioblastoma multiforme. Mol Cancer Res 4:709–714PubMedCrossRefGoogle Scholar
  25. 25.
    Kita D, Yonekawa Y, Weller M, Ohgaki H (2007) PIK3CA alterations in primary (de novo) and secondary glioblastomas. Acta Neuropathol 113:295–302PubMedCrossRefGoogle Scholar
  26. 26.
    Prevo R, Deutsch E, Sampson O, Diplexcito J, Cengel K, Harper J, O’Neill P, McKenna WG, Patel S, Bernhard EJ (2008) Class I PI3 kinase inhibition by the pyridinylfuranopyrimidine inhibitor PI-103 enhances tumor radiosensitivity. Cancer Res 68:5915–5923PubMedCrossRefGoogle Scholar
  27. 27.
    Opel D, Westhoff MA, Bender A, Braun V, Debatin KM, Fulda S (2008) Phosphatidylinositol 3-kinase inhibition broadly sensitizes glioblastoma cells to death receptor- and drug-induced apoptosis. Cancer Res 68:6271–6280PubMedCrossRefGoogle Scholar
  28. 28.
    Wang G, Kang C, Pu P (2010) Increased expression of Akt2 and activity of PI3K and cell proliferation with the ascending of tumor grade of human gliomas. Clin Neurol Neurosurg 112:324–327PubMedCrossRefGoogle Scholar
  29. 29.
    Zhang J, Han L, Zhang A, Wang Y, Yue X, You Y, Pu P, Kang C (2010) AKT2 expression is associated with glioma malignant progression and required for cell survival and invasion. Oncol Rep 24:65–72PubMedGoogle Scholar
  30. 30.
    Jiang H, Shang X, Wu H, Gautam SC, Al-Holou S, Li C, Kuo J, Zhang L, Chopp M (2009) Resveratrol downregulates PI3K/Akt/mTOR signaling pathways in human U251 glioma cells. J Exp Ther Oncol 8:25–33PubMedGoogle Scholar
  31. 31.
    Ruano Y, Mollejo M, Camacho FI, Rodriguez de Lope A, Fiano C, Ribalta T, Martinez P, Hernandez-Moneo JL, Melendez B (2008) Identification of survival-related genes of the phosphatidylinositol 3’-kinase signaling pathway in glioblastoma multiforme. Cancer 112:1575–1584PubMedCrossRefGoogle Scholar
  32. 32.
    Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD, Miller CR, Ding L, Golub T, Mesirov JP, Alexe G, Lawrence M, O’Kelly M, Tamayo P, Weir BA, Gabriel S, Winckler W, Gupta S, Jakkula L, Feiler HS, Hodgson JG, James CD, Sarkaria JN, Brennan C, Kahn A, Spellman PT, Wilson RK, Speed TP, Gray JW, Meyerson M, Getz G, Perou CM, Hayes DN, Cancer Genome Atlas Research Network (2010) Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17:98–110PubMedCrossRefGoogle Scholar
  33. 33.
    Denli AM, Tops BB, Plasterk RH, Ketting RF, Hannon GJ (2004) Processing of primary microRNAs by the microprocessor complex. Nature 432:231–235PubMedCrossRefGoogle Scholar
  34. 34.
    Gregory RI, Chendrimada TP, Cooch N, Shiekhattar R (2005) Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell 123:631–640PubMedCrossRefGoogle Scholar
  35. 35.
    Zhou X, Duan X, Qian J, Li F (2009) Abundant conserved microRNA target sites in the 5′-untranslated region and coding sequence. Genetica 137:159–164PubMedCrossRefGoogle Scholar
  36. 36.
    Duursma AM, Kedde M, Schrier M, le Sage C, Agami R (2008) miR-148 targets human DNMT3b protein coding region. Rna 14:872–877PubMedCrossRefGoogle Scholar
  37. 37.
    Tsai NP, Lin YL, Wei LN (2009) MicroRNA miR-346 targets the 5′-untranslated region of receptor-interacting protein 140 (RIP140) mRNA and up-regulates its protein expression. Biochem J 424:411–418PubMedCrossRefGoogle Scholar
  38. 38.
    Ciafrè SA, Galardi S, Mangiola A, Ferracin M, Liu CG, Sabatino G, Negrini M, Maira G, Croce CM, Farace MG (2005) Extensive modulation of a set of microRNAs in primary glioblastoma. Biochem Biophys Res Commun 334:1351–1358PubMedCrossRefGoogle Scholar
  39. 39.
    Guessous F, Zhang Y, Kofman A, Catania A, Li Y, Schiff D, Purow B, Abounader R (2010) microRNA-34a is tumor suppressive in brain tumors and glioma stem cells. Cell Cycle 9:1031–1036PubMedCrossRefGoogle Scholar
  40. 40.
    Jiang L, Mao P, Song L, Wu J, Huang J, Lin C, Yuan J, Qu L, Cheng SY, Li J (2010) miR-182 as a prognostic marker for glioma progression and patient survival. Am J Pathol 177:29–38PubMedCrossRefGoogle Scholar
  41. 41.
    Kefas B, Comeau L, Erdle N, Montgomery E, Amos S, Purow B (2010) Pyruvate kinase M2 is a target of the tumor-suppressive microRNA-326 and regulates the survival of glioma cells. Neuro Oncol 12:1102–1112PubMedCrossRefGoogle Scholar
  42. 42.
    Godlewski J, Nowicki MO, Bronisz A, Williams S, Otsuki A, Nuovo G, Raychaudhury A, Newton HB, Chiocca EA, Lawler S (2008) Targeting of the Bmi-1 oncogene/stem cell renewal factor by microRNA-128 inhibits glioma proliferation and self-renewal. Cancer Res 68:9125–9130PubMedCrossRefGoogle Scholar
  43. 43.
    Conti A, Aguennouz M, La Torre D, Tomasello C, Cardali S, Angileri FF, Maio F, Cama A, Germano A, Vita G, Tomasello F (2009) miR-21 and 221 upregulation and miR-181b downregulation in human grade II–IV astrocytic tumors. J Neurooncol 93:325–332PubMedCrossRefGoogle Scholar
  44. 44.
    Chan JA, Krichevsky AM, Kosik KS (2005) MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res 65:6029–6033PubMedCrossRefGoogle Scholar
  45. 45.
    Zhou X, Zhang J, Jia Q, Ren Y, Wang Y, Shi L, Liu N, Wang G, Pu P, You Y, Kang C (2010) Reduction of miR-21 induces glioma cell apoptosis via activating caspase 9 and 3. Oncol Rep 24:195–201PubMedCrossRefGoogle Scholar
  46. 46.
    Papagiannakopoulos T, Shapiro A, Kosik KS (2008) MicroRNA-21 targets a network of key tumor-suppressive pathways in glioblastoma cells. Cancer Res 68:8164–8172PubMedCrossRefGoogle Scholar
  47. 47.
    Ren Y, Zhou X, Mei M, Yuan XB, Han L, Wang GX, Jia ZF, Xu P, Pu PY, Kang CS (2010) MicroRNA-21 inhibitor sensitizes human glioblastoma cells U251 (PTEN-mutant) and LN229 (PTEN-wild type) to taxol. BMC Cancer 10:27PubMedCrossRefGoogle Scholar
  48. 48.
    Gabriely G, Wurdinger T, Kesari S, Esau CC, Burchard J, Linsley PS, Krichevsky AM (2008) MicroRNA 21 promotes glioma invasion by targeting matrix metalloproteinase regulators. Mol Cell Biol 28:5369–5380PubMedCrossRefGoogle Scholar
  49. 49.
    Chen Y, Liu W, Chao T, Zhang Y, Yan X, Gong Y, Qiang B, Yuan J, Sun M, Peng X (2008) MicroRNA-21 down-regulates the expression of tumor suppressor PDCD4 in human glioblastoma cell T98G. Cancer Lett 272:197–205PubMedCrossRefGoogle Scholar
  50. 50.
    Zhou X, Ren Y, Moore L, Mei M, You Y, Xu P, Wang B, Wang G, Jia Z, Pu P, Zhang W, Kang C (2010) Downregulation of miR-21 inhibits EGFR pathway and suppresses the growth of human glioblastoma cells independent of PTEN status. Lab Invest 90:144–155PubMedCrossRefGoogle Scholar
  51. 51.
    Li Y, Li W, Yang Y, Lu Y, He C, Hu G, Liu H, Chen J, He J, Yu H (2009) MicroRNA-21 targets LRRFIP1 and contributes to VM-26 resistance in glioblastoma multiforme. Brain Res 1286:13–18PubMedCrossRefGoogle Scholar
  52. 52.
    Zhu S, Si ML, Wu H, Mo YY (2007) MicroRNA-21 targets the tumor suppressor gene tropomyosin 1 (TPM1). J Biol Chem 282:14328–14336PubMedCrossRefGoogle Scholar
  53. 53.
    Sayed D, He M, Hong C, Gao S, Rane S, Yang Z, Abdellatif M (2010) MicroRNA-21 is a downstream effector of AKT that mediates its antiapoptotic effects via suppression of Fas ligand. J Biol Chem 285:20281–20290PubMedCrossRefGoogle Scholar
  54. 54.
    Li T, Li D, Sha J, Sun P, Huang Y (2009) MicroRNA-21 directly targets MARCKS and promotes apoptosis resistance and invasion in prostate cancer cells. Biochem Biophys Res Commun 383:280–285PubMedCrossRefGoogle Scholar
  55. 55.
    Wang K, Li PF (2010) Foxo3a regulates apoptosis by negatively targeting miR-21. J Biol Chem 285:16958–16966PubMedCrossRefGoogle Scholar
  56. 56.
    Yuki K, Natsume A, Yokoyama H, Kondo Y, Ohno M, Kato T, Chansakul P, Ito M, Kim SU, Wakabayashi T (2009) Induction of oligodendrogenesis in glioblastoma-initiating cells by IFN-mediated activation of STAT3 signaling. Cancer Lett 284:71–79PubMedCrossRefGoogle Scholar
  57. 57.
    Loffler D, Brocke-Heidrich K, Pfeifer G, Stocsits C, Hackermuller J, Kretzschmar AK, Burger R, Gramatzki M, Blumert C, Bauer K, Cvijic H, Ullmann AK, Stadler PF, Horn F (2007) Interleukin-6 dependent survival of multiple myeloma cells involves the Stat3-mediated induction of microRNA-21 through a highly conserved enhancer. Blood 110:1330–1333PubMedCrossRefGoogle Scholar
  58. 58.
    Zhang C, Kang C, You Y, Pu P, Yang W, Zhao P, Wang G, Zhang A, Jia Z, Han L, Jiang H (2009) Co-suppression of miR-221/222 cluster suppresses human glioma cell growth by targeting p27kip1 in vitro and in vivo. Int J Oncol 34:1653–1660PubMedCrossRefGoogle Scholar
  59. 59.
    Zhang J, Han L, Ge Y, Zhou X, Zhang A, Zhang C, Zhong Y, You Y, Pu P, Kang C (2010) miR-221/222 promote malignant progression of glioma through activation of the Akt pathway. Int J Oncol 36:913–920PubMedGoogle Scholar
  60. 60.
    Medina R, Zaidi SK, Liu CG, Stein JL, van Wijnen AJ, Croce CM, Stein GS (2008) MicroRNAs 221 and 222 bypass quiescence and compromise cell survival. Cancer Res 68:2773–2780PubMedCrossRefGoogle Scholar
  61. 61.
    He H, Jazdzewski K, Li W, Liyanarachchi S, Nagy R, Volinia S, Calin GA, Liu CG, Franssila K, Suster S, Kloos RT, Croce CM, de la Chapelle A (2005) The role of microRNA genes in papillary thyroid carcinoma. Proc Natl Acad Sci USA 102:19075–19080PubMedCrossRefGoogle Scholar
  62. 62.
    Chun-Zhi Z, Lei H, An-Ling Z, Yan-Chao F, Xiao Y, Guang-Xiu W, Zhi-Fan J, Pei-Yu P, Qing-Yu Z, Chun-Sheng K (2010) MicroRNA-221 and microRNA-222 regulate gastric carcinoma cell proliferation and radioresistance by targeting PTEN. BMC Cancer 10:367PubMedCrossRefGoogle Scholar
  63. 63.
    Zhang CZ, Kang CS, Pu PY, Wang GX, Jia ZF, Zhang AL, Han L, Xu P (2009) Inhibitory effect of knocking down microRNA-221 and microRNA-222 on glioma cell growth in vitro and in vivo. Zhonghua Zhong Liu Za Zhi 31:721–726PubMedGoogle Scholar
  64. 64.
    Kefas B, Godlewski J, Comeau L, Li Y, Abounader R, Hawkinson M, Lee J, Fine H, Chiocca EA, Lawler S, Purow B (2008) microRNA-7 inhibits the epidermal growth factor receptor and the Akt pathway and is down-regulated in glioblastoma. Cancer Res 68:3566–3572PubMedCrossRefGoogle Scholar
  65. 65.
    Gal H, Pandi G, Kanner AA, Ram Z, Lithwick-Yanai G, Amariglio N, Rechavi G, Givol D (2008) MIR-451 and Imatinib mesylate inhibit tumor growth of Glioblastoma stem cells. Biochem Biophys Res Commun 376:86–90PubMedCrossRefGoogle Scholar
  66. 66.
    Godlewski J, Nowicki MO, Bronisz A, Nuovo G, Palatini J, De Lay M, Van Brocklyn J, Ostrowski MC, Chiocca EA, Lawler SE (2010) MicroRNA-451 regulates LKB1/AMPK signaling and allows adaptation to metabolic stress in glioma cells. Mol Cell 37:620–632PubMedCrossRefGoogle Scholar
  67. 67.
    Nan Y, Han L, Zhang A, Wang G, Jia Z, Yang Y, Yue X, Pu P, Zhong Y, Kang C (2010) miRNA-451 plays a role as tumor suppressor in human glioma cells. Brain Res 1359:14–21PubMedCrossRefGoogle Scholar
  68. 68.
    Huse JT, Brennan C, Hambardzumyan D, Wee B, Pena J, Rouhanifard SH, Sohn-Lee C, le Sage C, Agami R, Tuschl T, Holland EC (2009) The PTEN-regulating microRNA miR-26a is amplified in high-grade glioma and facilitates gliomagenesis in vivo. Genes Dev 23:1327–1337PubMedCrossRefGoogle Scholar
  69. 69.
    Zhang Y, Chao T, Li R, Liu W, Chen Y, Yan X, Gong Y, Yin B, Liu W, Qiang B, Zhao J, Yuan J, Peng X (2009) MicroRNA-128 inhibits glioma cells proliferation by targeting transcription factor E2F3a. J Mol Med 87:43–51PubMedCrossRefGoogle Scholar
  70. 70.
    Silber J, Lim DA, Petritsch C, Persson AI, Maunakea AK, Yu M, Vandenberg SR, Ginzinger DG, James CD, Costello JF, Bergers G, Weiss WA, Alvarez-Buylla A, Hodgson JG (2008) miR-124 and miR-137 inhibit proliferation of glioblastoma multiforme cells and induce differentiation of brain tumor stem cells. BMC Med 6:14PubMedCrossRefGoogle Scholar
  71. 71.
    Shi L, Cheng Z, Zhang J, Li R, Zhao P, Fu Z, You Y (2008) hsa-miR-181a and hsa-miR-181b function as tumor suppressors in human glioma cells. Brain Res 1236:185–193PubMedCrossRefGoogle Scholar
  72. 72.
    Sasayama T, Nishihara M, Kondoh T, Hosoda K, Kohmura E (2009) MicroRNA-10b is overexpressed in malignant glioma and associated with tumor invasive factors, uPAR and RhoC. Int J Cancer 125:1407–1413PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2011

Authors and Affiliations

  • Yingyi Wang
    • 1
  • Xiefeng Wang
    • 1
  • Junxia Zhang
    • 1
    • 2
  • Guan Sun
    • 3
  • Hui Luo
    • 1
  • Chunsheng Kang
    • 2
  • Peiyu Pu
    • 2
  • Tao Jiang
    • 4
  • Ning Liu
    • 1
  • Yongping You
    • 1
  1. 1.Department of NeurosurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingPeople’s Republic of China
  2. 2.Department of NeurosurgeryTianjin Medical University General Hospital, and Laboratory of Neuro-Oncology, Tianjin Neurological InstituteTianjinPeople’s Republic of China
  3. 3.Department of NeurosurgeryFourth Affiliated Hospital of Nantong University, First Hospital of YanchengNantongPeople’s Republic of China
  4. 4.Department of NeurosurgeryTiantan Hospital, Capital Medical UniversityBeijingPeople’s Republic of China

Personalised recommendations