Journal of Neuro-Oncology

, Volume 105, Issue 3, pp 451–466 | Cite as

The roles of viruses in brain tumor initiation and oncomodulation

  • Alexander Kofman
  • Lucasz Marcinkiewicz
  • Evan Dupart
  • Anton Lyshchev
  • Boris Martynov
  • Anatolii Ryndin
  • Elena Kotelevskaya
  • Jay Brown
  • David Schiff
  • Roger Abounader
Topic Review

Abstract

While some avian retroviruses have been shown to induce gliomas in animal models, human herpesviruses, specifically, the most extensively studied cytomegalovirus, and the much less studied roseolovirus HHV-6, and Herpes simplex viruses 1 and 2, currently attract more and more attention as possible contributing or initiating factors in the development of human brain tumors. The aim of this review is to summarize and highlight the most provoking findings indicating a potential causative link between brain tumors, specifically malignant gliomas, and viruses in the context of the concepts of viral oncomodulation and the tumor stem cell origin.

Keywords

Gliomas Brain tumors Viruses Herpesviruses Retroviruses Oncomodulation Progenitors Stem cells 

Notes

Acknowledgments

We thank Chris Letson for reading and correcting the manuscript. Supported by NIH RO1 NS045209 (R. Abounader) and NIH R01 CA134843 (R. Abounader).

References

  1. 1.
    Wen PY, Kesari S (2008) Malignant gliomas in adults. N Engl J Med 359:492–507PubMedCrossRefGoogle Scholar
  2. 2.
    Sakamoto K, Hoshino H, Kiuchi Y, Nakano G, Nagamachi Y (1989) Potential usefulness of a cultured glioma cell line induced by Rous sarcoma virus in B10.A mouse as an immunotherapy model. Jpn J Exp Med 59:173–180PubMedGoogle Scholar
  3. 3.
    Nakamura O, Hojo S, Takakura K, Nagashima K, Ishizaki R (1982) Schmidt Ruppin-D-ASV-induced primary rat brain tumor model for therapeutic screening. No To Shinkei 34:691–697PubMedGoogle Scholar
  4. 4.
    Rabotti GF (1981) Gliomas induced in mammals by Rous sarcoma virus (RSV) (author’s transl). Neurochirurgie 27:247–249PubMedGoogle Scholar
  5. 5.
    Kumanishi T, Ikuta F, Yamamoto T (1973) Brain tumors induced by Rous sarcoma virus, Schmidt-Ruppin strain. 3. Morphology of brain tumors induced in adult mice. J Natl Cancer Inst 50:95–109PubMedGoogle Scholar
  6. 6.
    Bigner DD, Odom GL, Mahaley MS Jr, Day ED (1969) Brain tumors induced in dogs by the Schmidt-Ruppin strain of Rous sarcoma virus. Neuropathological and immunological observations. J Neuropathol Exp Neurol 28:648–680PubMedCrossRefGoogle Scholar
  7. 7.
    Mahaley MS Jr, Aronin PA, Michael AJ, Bigner D (1983) Prevention of glioma induction in rats by simultaneous intracerebral inoculation of avian sarcoma virus plus bacillus Calmette-Guerin cell-wall preparation. Surg Neurol 19:453–455PubMedCrossRefGoogle Scholar
  8. 8.
    Lee YS, Wikstrand CJ, Bigner DD (1986) Glioma-associated antigens defined by monoclonal antibodies against an avian sarcoma virus-induced rat astrocytoma. J Neuroimmunol 13:183–202PubMedCrossRefGoogle Scholar
  9. 9.
    Britt RH, Lyons BE, Eng LF, Bigner SH, Bigner DD (1985) Immunohistochemical study of glial fibrillary acidic protein in avian sarcoma virus-induced gliomas in dogs. J Neurooncol 3:53–59PubMedCrossRefGoogle Scholar
  10. 10.
    Haguenau F (1981) Comparative ultrastructure of human gliomas and experimental gliomas induced by Rous sarcoma virus (RSV) (author’s transl). Neurochirurgie 27:251–253PubMedGoogle Scholar
  11. 11.
    Iwata N, Ochiai K, Hayashi K, Ohashi K, Umemura T (2002) Avian retrovirus infection causes naturally occurring glioma: isolation and transmission of a virus from so-called fowl glioma. Avian Pathol 31:193–199PubMedCrossRefGoogle Scholar
  12. 12.
    Hatai H, Ochiai K, Nagakura K, Imanishi S, Ochi A, Kozakura R, Ono M, Goryo M, Ohashi K, Umemura T (2008) A recombinant avian leukosis virus associated with fowl glioma in layer chickens in Japan. Avian Pathol 37:127–137PubMedCrossRefGoogle Scholar
  13. 13.
    Hatai H, Ochiai K, Murakami M, Imanishi S, Tomioka Y, Toyoda T, Ohashi K, Umemura T (2008) Prevalence of fowl glioma-inducing virus in chickens of zoological gardens in Japan and nucleotide variation in the env gene. J Vet Med Sci 70:469–474PubMedCrossRefGoogle Scholar
  14. 14.
    Tomioka Y, Ochiai K, Ohashi K, Kimura T, Umemura T (2003) In ovo infection with an avian leukosis virus causing fowl glioma: viral distribution and pathogenesis. Avian Pathol 32:617–624PubMedCrossRefGoogle Scholar
  15. 15.
    Toyoda T, Ochiai K, Hatai H, Murakami M, Ono E, Kimura T, Umemura T (2006) Cerebellar hypoplasia associated with an avian leukosis virus inducing fowl glioma. Vet Pathol 43:294–301PubMedCrossRefGoogle Scholar
  16. 16.
    Hatai H, Ochiai K, Tomioka Y, Toyoda T, Hayashi K, Anada M, Kato M, Toda A, Ohashi K, Ono E, Kimura T, Umemura T (2005) Nested polymerase chain reaction for detection of the avian leukosis virus causing so-called fowl glioma. Avian Pathol 34:473–479PubMedCrossRefGoogle Scholar
  17. 17.
    Tomioka Y, Ochiai K, Ohashi K, Ono E, Toyoda T, Kimura T, Umemura T (2004) Genome sequence analysis of the avian retrovirus causing so-called fowl glioma and the promoter activity of the long terminal repeat. J Gen Virol 85:647–652PubMedCrossRefGoogle Scholar
  18. 18.
    Anzil AP, Stavrou D, Blizinger K (1978) Type-C viral particles in cell cultures of chemically induced glioma in Sprague-Dawley rats. Vopr Onkol 24:30–32PubMedGoogle Scholar
  19. 19.
    Armelin MC, Garrido J, Armelin HA (1983) RNA tumor virus production accompanies the transformed phenotype change induced by hydrocortisone hormone in rat glioma cells. Cell Biol Int Rep 7:689–696PubMedCrossRefGoogle Scholar
  20. 20.
    Boeke JD, Stoye JP (1997) Retrotransposons, endogenous retroviruses, and the evolution of retroelements. In: Coffin JM, Hughes SH, Varmus HE (eds) Retroviruses. Cold Spring Harbor, New YorkGoogle Scholar
  21. 21.
    Han JS, Boeke JD (2005) LINE-1 retrotransposons: modulators of quantity and quality of mammalian gene expression? Bioessays 27:775–784PubMedCrossRefGoogle Scholar
  22. 22.
    Shapiro JA (2005) Retrotransposons and regulatory suites. Bioessays 27:122–125PubMedCrossRefGoogle Scholar
  23. 23.
    Beraldi R, Pittoggi C, Sciamanna I, Mattei E, Spadafora C (2006) Expression of LINE-1 retroposons is essential for murine preimplantation development. Mol Reprod Dev 73:279–287PubMedCrossRefGoogle Scholar
  24. 24.
    Svoboda P, Stein P, Anger M, Bernstein E, Hannon GJ, Schultz RM (2004) RNAi and expression of retrotransposons MuERV-L and IAP in preimplantation mouse embryos. Dev Biol 269:276–285PubMedCrossRefGoogle Scholar
  25. 25.
    Coufal NG, Garcia-Perez JL, Peng GE, Yeo GW, Mu Y, Lovci MT, Morell M, O’Shea KS, Moran JV, Gage FH (2009) L1 retrotransposition in human neural progenitor cells. Nature 460:1127–1131PubMedCrossRefGoogle Scholar
  26. 26.
    Kuwabara T, Hsieh J, Muotri A, Yeo G, Warashina M, Lie DC, Moore L, Nakashima K, Asashima M, Gage FH (2009) Wnt-mediated activation of NeuroD1 and retro-elements during adult neurogenesis. Nat Neurosci 12:1097–1105PubMedCrossRefGoogle Scholar
  27. 27.
    Konkel MK, Batzer MA (2010) A mobile threat to genome stability: The impact of non-LTR retrotransposons upon the human genome. Semin Cancer Biol 20:211–221PubMedCrossRefGoogle Scholar
  28. 28.
    Wilkins AS (2010) The enemy within: an epigenetic role of retrotransposons in cancer initiation. Bioessays 32:856–865PubMedCrossRefGoogle Scholar
  29. 29.
    Misra A, Chosdol K, Sarkar C, Mahapatra AK, Sinha S (2001) Alteration of a sequence with homology to human endogenous retrovirus (HERV-K) in primary human glioma: implications for viral repeat mediated rearrangement. Mutat Res 484:53–59PubMedCrossRefGoogle Scholar
  30. 30.
    Michaelis M, Doerr HW, Cinatl J (2009) The story of human cytomegalovirus and cancer: increasing evidence and open questions. Neoplasia 11:1–9PubMedGoogle Scholar
  31. 31.
    Cinatl J Jr, Nevels M, Paulus C, Michaelis M (2009) Activation of telomerase in glioma cells by human cytomegalovirus: another piece of the puzzle. J Natl Cancer Inst 101:441–443PubMedCrossRefGoogle Scholar
  32. 32.
    Soderberg-Naucler C (2006) Does cytomegalovirus play a causative role in the development of various inflammatory diseases and cancer? J Intern Med 259:219–246PubMedCrossRefGoogle Scholar
  33. 33.
    Soderberg-Naucler C (2008) HCMV microinfections in inflammatory diseases and cancer. J Clin Virol 41:218–223PubMedCrossRefGoogle Scholar
  34. 34.
    Soderberg-Naucler C (2006) Human cytomegalovirus persists in its host and attacks and avoids elimination by the immune system. Crit Rev Immunol 26:231–264PubMedGoogle Scholar
  35. 35.
    Gredmark-Russ S, Dzabic M, Rahbar A, Wanhainen A, Bjorck M, Larsson E, Michel JB, Soderberg-Naucler C (2009) Active cytomegalovirus infection in aortic smooth muscle cells from patients with abdominal aortic aneurysm. J Mol Med 87:347–356PubMedCrossRefGoogle Scholar
  36. 36.
    Cinatl J Jr, Nevels M, Paulus C, Michaelis M (2009) Activation of telomerase in glioma cells by human cytomegalovirus: another piece of the puzzle. J Natl Cancer Inst 101:441–443PubMedCrossRefGoogle Scholar
  37. 37.
    Varani S, Mastroianni A, Frascaroli G, Tammik C, Rahbar A, Christensson M, Rossini G, Landini MP, Soderberg-Naucler C (2009) Generalized Wegener’s granulomatosis in an immunocompetent adult after cytomegalovirus mononucleosis and bacterial urinary tract infection. Arthritis Rheum 60:1558–1562PubMedCrossRefGoogle Scholar
  38. 38.
    Varani S, Frascaroli G, Landini MP, Soderberg-Naucler C (2009) Human cytomegalovirus targets different subsets of antigen-presenting cells with pathological consequences for host immunity: implications for immunosuppression, chronic inflammation and autoimmunity. Rev Med Virol 19:131–145PubMedCrossRefGoogle Scholar
  39. 39.
    Cederarv M, Soderberg-Naucler C, Odeberg J (2009) HCMV infection of PDCs deviates the NK cell response into cytokine-producing cells unable to perform cytotoxicity. Immunobiology 214:331–341PubMedCrossRefGoogle Scholar
  40. 40.
    Gredmark S, Jonasson L, Van Gosliga D, Ernerudh J, Soderberg-Naucler C (2007) Active cytomegalovirus replication in patients with coronary disease. Scand Cardiovasc J 41:230–234PubMedCrossRefGoogle Scholar
  41. 41.
    Larsson S, Soderberg-Naucler C, Wang FZ, Moller E (1998) Cytomegalovirus DNA can be detected in peripheral blood mononuclear cells from all seropositive and most seronegative healthy blood donors over time. Transfusion 38:271–278PubMedCrossRefGoogle Scholar
  42. 42.
    Straat K, Liu C, Rahbar A, Zhu Q, Liu L, Wolmer-Solberg N, Lou F, Liu Z, Shen J, Jia J, Kyo S, Bjorkholm M, Sjoberg J, Soderberg-Naucler C, Xu D (2009) Activation of telomerase by human cytomegalovirus. J Natl Cancer Inst 101:488–497PubMedCrossRefGoogle Scholar
  43. 43.
    Fuccillo DA, Sever JL, Moder FL, Chen TC, Catalano LW, Johnson LD (1971) Cytomegalovirus antibody in patients with carcinoma of the uterine cervix. Obstet Gynecol 38:599–601PubMedCrossRefGoogle Scholar
  44. 44.
    Harkins L, Volk AL, Samanta M, Mikolaenko I, Britt WJ, Bland KI, Cobbs CS (2002) Specific localisation of human cytomegalovirus nucleic acids and proteins in human colorectal cancer. Lancet 360:1557–1563PubMedCrossRefGoogle Scholar
  45. 45.
    Samanta M, Harkins L, Klemm K, Britt WJ, Cobbs CS (2003) High prevalence of human cytomegalovirus in prostatic intraepithelial neoplasia and prostatic carcinoma. J Urol 170:998–1002PubMedCrossRefGoogle Scholar
  46. 46.
    Cobbs CS, Harkins L, Samanta M, Gillespie GY, Bharara S, King PH, Nabors LB, Cobbs CG, Britt WJ (2002) Human cytomegalovirus infection and expression in human malignant glioma. Cancer Res 62:3347–3350PubMedGoogle Scholar
  47. 47.
    Scheurer ME, El-Zein R, Bondy ML, Harkins L, Cobbs CS (2007) RE: “Lack of association of herpesviruses with brain tumors”. J Neurovirol 13:85 author reply 86–87PubMedCrossRefGoogle Scholar
  48. 48.
    Miller G (2009) Brain cancer. A viral link to glioblastoma? Science 323:30–31PubMedCrossRefGoogle Scholar
  49. 49.
    Scheurer ME, Bondy ML, Aldape KD, Albrecht T, El-Zein R (2008) Detection of human cytomegalovirus in different histological types of gliomas. Acta Neuropathol 116:79–86PubMedCrossRefGoogle Scholar
  50. 50.
    Mitchell DA, Xie W, Schmittling R, Learn C, Friedman A, McLendon RE, Sampson JH (2008) Sensitive detection of human cytomegalovirus in tumors and peripheral blood of patients diagnosed with glioblastoma. Neuro Oncol 10:10–18PubMedCrossRefGoogle Scholar
  51. 51.
    Luo MH, Fortunato EA (2007) Long-term infection and shedding of human cytomegalovirus in T98G glioblastoma cells. J Virol 81:10424–10436PubMedCrossRefGoogle Scholar
  52. 52.
    Barami K (2010) Oncomodulatory mechanisms of human cytomegalovirus in gliomas. J Clin Neurosci 17:819–823PubMedCrossRefGoogle Scholar
  53. 53.
    Lucas KG, Bao L, Bruggeman R, Dunham K, Specht C (2011) The detection of CMV pp65 and IE1 in glioblastoma multiforme. J Neurooncol 103:231–238PubMedCrossRefGoogle Scholar
  54. 54.
    Prins RM, Cloughesy TF, Liau LM (2008) Cytomegalovirus immunity after vaccination with autologous glioblastoma lysate. N Engl J Med 359:539–541PubMedCrossRefGoogle Scholar
  55. 55.
    Seri B, Herrera DG, Gritti A, Ferron S, Collado L, Vescovi A, Garcia-Verdugo JM, Alvarez-Buylla A (2006) Composition and organization of the SCZ: a large germinal layer containing neural stem cells in the adult mammalian brain. Cereb Cortex 16(Suppl 1):i103–i111PubMedCrossRefGoogle Scholar
  56. 56.
    Perlman JM, Argyle C (1992) Lethal cytomegalovirus infection in preterm infants: clinical, radiological, and neuropathological findings. Ann Neurol 31:64–68PubMedCrossRefGoogle Scholar
  57. 57.
    Odeberg J, Wolmer N, Falci S, Westgren M, Sundtrom E, Seiger A, Soderberg-Naucler C (2007) Late human cytomegalovirus (HCMV) proteins inhibit differentiation of human neural precursor cells into astrocytes. J Neurosci Res 85:583–593PubMedCrossRefGoogle Scholar
  58. 58.
    Fritschy JM, Brandner S, Aguzzi A, Koedood M, Luscher B, Mitchell PJ (1996) Brain cell type specificity and gliosis-induced activation of the human cytomegalovirus immediate-early promoter in transgenic mice. J Neurosci 16:2275–2282PubMedGoogle Scholar
  59. 59.
    Odeberg J, Wolmer N, Falci S, Westgren M, Seiger A, Soderberg-Naucler C (2006) Human cytomegalovirus inhibits neuronal differentiation and induces apoptosis in human neural precursor cells. J Virol 80:8929–8939PubMedCrossRefGoogle Scholar
  60. 60.
    Koh K, Lee K, Ahn JH, Kim S (2009) Human cytomegalovirus infection downregulates the expression of glial fibrillary acidic protein in human glioblastoma U373MG cells: identification of viral genes and protein domains involved. J Gen Virol 90:954–962PubMedCrossRefGoogle Scholar
  61. 61.
    Lee K, Jeon K, Kim JM, Kim VN, Choi DH, Kim SU, Kim S (2005) Downregulation of GFAP, TSP-1, and p53 in human glioblastoma cell line, U373MG, by IE1 protein from human cytomegalovirus. Glia 51:1–12PubMedCrossRefGoogle Scholar
  62. 62.
    McCarthy M, Wood C, Fedoseyeva L, Whittemore SR (1995) Media components influence viral gene expression assays in human fetal astrocyte cultures. J Neurovirol 1:275–285PubMedCrossRefGoogle Scholar
  63. 63.
    Cheeran MC, Hu S, Gekker G, Lokensgard JR (2000) Decreased cytomegalovirus expression following proinflammatory cytokine treatment of primary human astrocytes. J Immunol 164:926–933PubMedGoogle Scholar
  64. 64.
    Lokensgard JR, Cheeran MC, Gekker G, Hu S, Chao CC, Peterson PK (1999) Human cytomegalovirus replication and modulation of apoptosis in astrocytes. J Hum Virol 2:91–101PubMedGoogle Scholar
  65. 65.
    Cheeran MC, Hu S, Ni HT, Sheng W, Palmquist JM, Peterson PK, Lokensgard JR (2005) Neural precursor cell susceptibility to human cytomegalovirus diverges along glial or neuronal differentiation pathways. J Neurosci Res 82:839–850PubMedCrossRefGoogle Scholar
  66. 66.
    Wolff D, Sinzger C, Drescher P, Jahn G, Plachter B (1994) Reduced levels of IE2 gene expression and shutdown of early and late viral genes during latent infection of the glioblastoma cell line U138-MG with selectable recombinants of human cytomegalovirus. Virology 204:101–113PubMedCrossRefGoogle Scholar
  67. 67.
    Wu J, O’Neill J, Barbosa MS (1998) Transcription factor Sp1 mediates cell-specific trans-activation of the human cytomegalovirus DNA polymerase gene promoter by immediate-early protein IE86 in glioblastoma U373MG cells. J Virol 72:236–244PubMedGoogle Scholar
  68. 68.
    Erlandsson A, Brannvall K, Gustafsdottir S, Westermark B, Forsberg-Nilsson K (2006) Autocrine/paracrine platelet-derived growth factor regulates proliferation of neural progenitor cells. Cancer Res 66:8042–8048PubMedCrossRefGoogle Scholar
  69. 69.
    Thorarinsdottir HK, Santi M, McCarter R, Rushing EJ, Cornelison R, Jales A, MacDonald TJ (2008) Protein expression of platelet-derived growth factor receptor correlates with malignant histology and PTEN with survival in childhood gliomas. Clin Cancer Res 14:3386–3394PubMedCrossRefGoogle Scholar
  70. 70.
    Assanah M, Lochhead R, Ogden A, Bruce J, Goldman J, Canoll P (2006) Glial progenitors in adult white matter are driven to form malignant gliomas by platelet-derived growth factor-expressing retroviruses. J Neurosci 26:6781–6790PubMedCrossRefGoogle Scholar
  71. 71.
    Soroceanu L, Akhavan A, Cobbs CS (2008) Platelet-derived growth factor-alpha receptor activation is required for human cytomegalovirus infection. Nature 455:391–395PubMedCrossRefGoogle Scholar
  72. 72.
    Gredmark S, Straat K, Homman-Loudiyi M, Kannisto K, Soderberg-Naucler C (2007) Human cytomegalovirus downregulates expression of receptors for platelet-derived growth factor by smooth muscle cells. J Virol 81:5112–5120PubMedCrossRefGoogle Scholar
  73. 73.
    Kuwahara R, Kofman AV, Landis CS, Swenson ES, Barendswaard E, Theise ND (2008) The hepatic stem cell niche: identification by label-retaining cell assay. Hepatology 47:1994–2002PubMedCrossRefGoogle Scholar
  74. 74.
    Philips A, Huet X, Plet A, Le Cam L, Vie A, Blanchard JM (1998) The retinoblastoma protein is essential for cyclin A repression in quiescent cells. Oncogene 16:1373–1381PubMedCrossRefGoogle Scholar
  75. 75.
    Kalejta RF, Shenk T (2003) Proteasome-dependent, ubiquitin-independent degradation of the Rb family of tumor suppressors by the human cytomegalovirus pp71 protein. Proc Natl Acad Sci USA 100:3263–3268PubMedCrossRefGoogle Scholar
  76. 76.
    Kalejta RF, Bechtel JT, Shenk T (2003) Human cytomegalovirus pp71 stimulates cell cycle progression by inducing the proteasome-dependent degradation of the retinoblastoma family of tumor suppressors. Mol Cell Biol 23:1885–1895PubMedCrossRefGoogle Scholar
  77. 77.
    Boldogh I, AbuBakar S, Albrecht T (1990) Activation of proto-oncogenes: an immediate early event in human cytomegalovirus infection. Science 247:561–564PubMedCrossRefGoogle Scholar
  78. 78.
    Spiller OB, Borysiewicz LK, Morgan BP (1997) Development of a model for cytomegalovirus infection of oligodendrocytes. J Gen Virol 78(Pt 12):3349–3356PubMedGoogle Scholar
  79. 79.
    Cobbs CS, Soroceanu L, Denham S, Zhang W, Kraus MH (2008) Modulation of oncogenic phenotype in human glioma cells by cytomegalovirus IE1-mediated mitogenicity. Cancer Res 68:724–730PubMedCrossRefGoogle Scholar
  80. 80.
    Maussang D, Verzijl D, van Walsum M, Leurs R, Holl J, Pleskoff O, Michel D, van Dongen GA, Smit MJ (2006) Human cytomegalovirus-encoded chemokine receptor US28 promotes tumorigenesis. Proc Natl Acad Sci USA 103:13068–13073PubMedCrossRefGoogle Scholar
  81. 81.
    Menendez D, Inga A, Resnick MA (2009) The expanding universe of p53 targets. Nat Rev Cancer 9:724–737PubMedCrossRefGoogle Scholar
  82. 82.
    Weisz L, Oren M, Rotter V (2007) Transcription regulation by mutant p53. Oncogene 26:2202–2211PubMedCrossRefGoogle Scholar
  83. 83.
    Deb S, Jackson CT, Subler MA, Martin DW (1992) Modulation of cellular and viral promoters by mutant human p53 proteins found in tumor cells. J Virol 66:6164–6170PubMedGoogle Scholar
  84. 84.
    Cinatl J, Scholz M, Kotchetkov R, Vogel JU, Doerr HW (2004) Molecular mechanisms of the modulatory effects of HCMV infection in tumor cell biology. Trends Mol Med 10:19–23PubMedCrossRefGoogle Scholar
  85. 85.
    Cinatl J Jr, Vogel JU, Kotchetkov R, Wilhelm Doerr H (2004) Oncomodulatory signals by regulatory proteins encoded by human cytomegalovirus: a novel role for viral infection in tumor progression. FEMS Microbiol Rev 28:59–77PubMedCrossRefGoogle Scholar
  86. 86.
    Castillo JP, Kowalik TF (2004) HCMV infection: modulating the cell cycle and cell death. Int Rev Immunol 23:113–139PubMedCrossRefGoogle Scholar
  87. 87.
    Sanchez V, Spector DH (2008) Subversion of cell cycle regulatory pathways. Curr Top Microbiol Immunol 325:243–262PubMedCrossRefGoogle Scholar
  88. 88.
    Song YJ, Stinski MF (2005) Inhibition of cell division by the human cytomegalovirus IE86 protein: role of the p53 pathway or cyclin-dependent kinase 1/cyclin B1. J Virol 79:2597–2603PubMedCrossRefGoogle Scholar
  89. 89.
    Muralidhar S, Doniger J, Mendelson E, Araujo JC, Kashanchi F, Azumi N, Brady JN, Rosenthal LJ (1996) Human cytomegalovirus mtrII oncoprotein binds to p53 and down-regulates p53-activated transcription. J Virol 70:8691–8700PubMedGoogle Scholar
  90. 90.
    Nevels M, Paulus C, Shenk T (2004) Human cytomegalovirus immediate-early 1 protein facilitates viral replication by antagonizing histone deacetylation. Proc Natl Acad Sci USA 101:17234–17239PubMedCrossRefGoogle Scholar
  91. 91.
    Hartmann M, Brunnemann H (1972) Chromosome aberrations in cytomegalovirus-infected human diploid cell culture. Acta Virol 16:176PubMedGoogle Scholar
  92. 92.
    Fortunato EA, Spector DH (2003) Viral induction of site-specific chromosome damage. Rev Med Virol 13:21–37PubMedCrossRefGoogle Scholar
  93. 93.
    Fortunato EA, Dell’Aquila ML, Spector DH (2000) Specific chromosome 1 breaks induced by human cytomegalovirus. Proc Natl Acad Sci USA 97:853–858PubMedCrossRefGoogle Scholar
  94. 94.
    Baumgartner M, Schneider R, Auer B, Herzog H, Schweiger M, Hirsch-Kauffmann M (1992) Fluorescence in situ mapping of the human nuclear NAD + ADP-ribosyltransferase gene (ADPRT) and two secondary sites to human chromosomal bands 1q42, 13q34, and 14q24. Cytogenet Cell Genet 61:172–174PubMedCrossRefGoogle Scholar
  95. 95.
    Li YS, Ramsay DA, Fan YS, Armstrong RF, Del Maestro RF (1995) Cytogenetic evidence that a tumor suppressor gene in the long arm of chromosome 1 contributes to glioma growth. Cancer Genet Cytogenet 84:46–50PubMedCrossRefGoogle Scholar
  96. 96.
    Bieche I, Champeme MH, Lidereau R (1995) Loss and gain of distinct regions of chromosome 1q in primary breast cancer. Clin Cancer Res 1:123–127PubMedGoogle Scholar
  97. 97.
    Shen Y, Zhu H, Shenk T (1997) Human cytomagalovirus IE1 and IE2 proteins are mutagenic and mediate “hit-and-run” oncogenic transformation in cooperation with the adenovirus E1A proteins. Proc Natl Acad Sci U S A 94:3341–3345PubMedCrossRefGoogle Scholar
  98. 98.
    Boldogh I, Huang ES, Rady P, Arany I, Tyring S, Albrecht T (1994) Alteration in the coding potential and expression of H-ras in human cytomegalovirus-transformed cells. Intervirology 37:321–329PubMedGoogle Scholar
  99. 99.
    Dolan A, Cunningham C, Hector RD, Hassan-Walker AF, Lee L, Addison C, Dargan DJ, McGeoch DJ, Gatherer D, Emery VC, Griffiths PD, Sinzger C, McSharry BP, Wilkinson GW, Davison AJ (2004) Genetic content of wild-type human cytomegalovirus. J Gen Virol 85:1301–1312PubMedCrossRefGoogle Scholar
  100. 100.
    Hahn G, Revello MG, Patrone M, Percivalle E, Campanini G, Sarasini A, Wagner M, Gallina A, Milanesi G, Koszinowski U, Baldanti F, Gerna G (2004) Human cytomegalovirus UL131–128 genes are indispensable for virus growth in endothelial cells and virus transfer to leukocytes. J Virol 78:10023–10033PubMedCrossRefGoogle Scholar
  101. 101.
    Gerna G, Percivalle E, Lilleri D, Lozza L, Fornara C, Hahn G, Baldanti F, Revello MG (2005) Dendritic-cell infection by human cytomegalovirus is restricted to strains carrying functional UL131–128 genes and mediates efficient viral antigen presentation to CD8+ T cells. J Gen Virol 86:275–284PubMedCrossRefGoogle Scholar
  102. 102.
    Geder L, Laychock AM, Gorodecki J, Rapp F (1978) Alterations in biological properties of different lines of cytomegalorivus-transformed human embryo lung cells following in vitro cultivation. IARC Sci Publ 24:591–601PubMedGoogle Scholar
  103. 103.
    Washington AT, Singh G, Aiyar A (2010) Diametrically opposed effects of hypoxia and oxidative stress on two viral transactivators. Virol J 7:93PubMedCrossRefGoogle Scholar
  104. 104.
    Pipiya T, Sauthoff H, Huang YQ, Chang B, Cheng J, Heitner S, Chen S, Rom WN, Hay JG (2005) Hypoxia reduces adenoviral replication in cancer cells by downregulation of viral protein expression. Gene Ther 12:911–917PubMedCrossRefGoogle Scholar
  105. 105.
    Haque M, Davis DA, Wang V, Widmer I, Yarchoan R (2003) Kaposi’s sarcoma-associated herpesvirus (human herpesvirus 8) contains hypoxia response elements: relevance to lytic induction by hypoxia. J Virol 77:6761–6768PubMedCrossRefGoogle Scholar
  106. 106.
    Davis DA, Rinderknecht AS, Zoeteweij JP, Aoki Y, Read-Connole EL, Tosato G, Blauvelt A, Yarchoan R (2001) Hypoxia induces lytic replication of Kaposi sarcoma-associated herpesvirus. Blood 97:3244–3250PubMedCrossRefGoogle Scholar
  107. 107.
    Pina-Oviedo S, Khalili K, Del Valle L (2009) Hypoxia inducible factor-1 alpha activation of the JCV promoter: role in the pathogenesis of progressive multifocal leukoencephalopathy. Acta Neuropathol 118:235–247PubMedCrossRefGoogle Scholar
  108. 108.
    Nakamura M, Bodily JM, Beglin M, Kyo S, Inoue M, Laimins LA (2009) Hypoxia-specific stabilization of HIF-1alpha by human papillomaviruses. Virology 387:442–448PubMedCrossRefGoogle Scholar
  109. 109.
    Fasullo M, Burch AD, Britton A (2009) Hypoxia enhances the replication of oncolytic herpes simplex virus in p53- breast cancer cells. Cell Cycle 8:2194–2197PubMedCrossRefGoogle Scholar
  110. 110.
    Haeberle HA, Durrstein C, Rosenberger P, Hosakote YM, Kuhlicke J, Kempf VA, Garofalo RP, Eltzschig HK (2008) Oxygen-independent stabilization of hypoxia inducible factor (HIF)-1 during RSV infection. PLoS One 3:e3352PubMedCrossRefGoogle Scholar
  111. 111.
    Jiang JH, Wang N, Li A, Liao WT, Pan ZG, Mai SJ, Li DJ, Zeng MS, Wen JM, Zeng YX (2006) Hypoxia can contribute to the induction of the Epstein-Barr virus (EBV) lytic cycle. J Clin Virol 37:98–103PubMedCrossRefGoogle Scholar
  112. 112.
    Cobbs CS, Soroceanu L, Denham S, Zhang W, Britt WJ, Pieper R, Kraus MH (2007) Human cytomegalovirus induces cellular tyrosine kinase signaling and promotes glioma cell invasiveness. J Neurooncol 85:271–280PubMedCrossRefGoogle Scholar
  113. 113.
    Ablashi DV, Josephs SF, Buchbinder A, Hellman K, Nakamura S, Llana T, Lusso P, Kaplan M, Dahlberg J, Memon S et al (1988) Human B-lymphotropic virus (human herpesvirus-6). J Virol Methods 21:29–48PubMedCrossRefGoogle Scholar
  114. 114.
    Flamand L, Komaroff AL, Arbuckle JH, Medveczky PG, Ablashi DV (2010) Review, part 1: Human herpesvirus-6-basic biology, diagnostic testing, and antiviral efficacy. J Med Virol 82:1560–1568PubMedCrossRefGoogle Scholar
  115. 115.
    Tang H, Mori Y (2010) Human herpesvirus-6 entry into host cells. Future Microbiol 5:1015–1023PubMedCrossRefGoogle Scholar
  116. 116.
    Revest M, Minjolle S, Veyer D, Lagathu G, Michelet C, Colimon R (2011) Detection of HHV-6 in over a thousand samples: New types of infection revealed by an analysis of positive results. J Clin Virol 51:20–24PubMedCrossRefGoogle Scholar
  117. 117.
    Yao K, Crawford JR, Komaroff AL, Ablashi DV, Jacobson S (2010) Review part 2: Human herpesvirus-6 in central nervous system diseases. J Med Virol 82:1669–1678PubMedCrossRefGoogle Scholar
  118. 118.
    Ablashi DV, Devin CL, Yoshikawa T, Lautenschlager I, Luppi M, Kuhl U, Komaroff AL (2010) Review Part 3: Human herpesvirus-6 in multiple non-neurological diseases. J Med Virol 82:1903–1910PubMedCrossRefGoogle Scholar
  119. 119.
    Chan PK, Ng HK, Cheng AF (1999) Detection of human herpesviruses 6 and 7 genomic sequences in brain tumours. J Clin Pathol 52:620–623PubMedCrossRefGoogle Scholar
  120. 120.
    Crawford JR, Santi MR, Thorarinsdottir HK, Cornelison R, Rushing EJ, Zhang H, Yao K, Jacobson S, Macdonald TJ (2009) Detection of human herpesvirus-6 variants in pediatric brain tumors: association of viral antigen in low grade gliomas. J Clin Virol 46:37–42PubMedCrossRefGoogle Scholar
  121. 121.
    Cuomo L, Trivedi P, Cardillo MR, Gagliardi FM, Vecchione A, Caruso R, Calogero A, Frati L, Faggioni A, Ragona G (2001) Human herpesvirus 6 infection in neoplastic and normal brain tissue. J Med Virol 63:45–51PubMedCrossRefGoogle Scholar
  122. 122.
    Luppi M, Barozzi P, Maiorana A, Marasca R, Trovato R, Fano R, Ceccherini-Nelli L, Torelli G (1995) Human herpesvirus-6: a survey of presence and distribution of genomic sequences in normal brain and neuroglial tumors. J Med Virol 47:105–111PubMedCrossRefGoogle Scholar
  123. 123.
    Neves AM, Thompson G, Carvalheira J, Trindade JC, Rueff J, Caetano JM, Casey JW, Hermouet S (2008) Detection and quantitative analysis of human herpesvirus in pilocytic astrocytoma. Brain Res 1221:108–114PubMedCrossRefGoogle Scholar
  124. 124.
    Rantala H, Mannonen L, Ahtiluoto S, Linnavuori K, Herva R, Vaheri A, Koskiniemi M (2000) Human herpesvirus-6 associated encephalitis with subsequent infantile spasms and cerebellar astrocytoma. Dev Med Child Neurol 42:418–421PubMedCrossRefGoogle Scholar
  125. 125.
    Stodberg T, Deniz Y, Esteitie N, Jacobsson B, Mousavi-Jazi M, Dahl H, Zweygberg WB, Grillner L, Linde A (2002) A case of diffuse leptomeningeal oligodendrogliomatosis associated with HHV-6 variant A. Neuropediatrics 33:266–270PubMedCrossRefGoogle Scholar
  126. 126.
    Albright AV, Lavi E, Black JB, Goldberg S, O’Connor MJ, Gonzalez-Scarano F (1998) The effect of human herpesvirus-6 (HHV-6) on cultured human neural cells: oligodendrocytes and microglia. J Neurovirol 4:486–494PubMedCrossRefGoogle Scholar
  127. 127.
    Donati D, Martinelli E, Cassiani-Ingoni R, Ahlqvist J, Hou J, Major EO, Jacobson S (2005) Variant-specific tropism of human herpesvirus 6 in human astrocytes. J Virol 79:9439–9448PubMedCrossRefGoogle Scholar
  128. 128.
    Dietrich J, Blumberg BM, Roshal M, Baker JV, Hurley SD, Mayer-Proschel M, Mock DJ (2004) Infection with an endemic human herpesvirus disrupts critical glial precursor cell properties. J Neurosci 24:4875–4883PubMedCrossRefGoogle Scholar
  129. 129.
    Studebaker AW, Kreofsky CR, Pierson CR, Russell SJ, Galanis E, Raffel C (2010) Treatment of medulloblastoma with a modified measles virus. Neuro Oncol 12:1034–1042PubMedCrossRefGoogle Scholar
  130. 130.
    Kong H, Baerbig Q, Duncan L, Shepel N, Mayne M (2003) Human herpesvirus type 6 indirectly enhances oligodendrocyte cell death. J Neurovirol 9:539–550PubMedGoogle Scholar
  131. 131.
    Strenger V, Urban C, Schwinger W, Nacheva EP, Aberle SW (2011) Transmission of chromosomally integrated HHV-6 by bone marrow transplantation. Pediatr Blood Cancer 56:171PubMedCrossRefGoogle Scholar
  132. 132.
    Arbuckle JH, Medveczky PG (2011) The molecular biology of human herpesvirus-6 latency and telomere integration. Microbes Infect. doi: 10.1016/j.micinf.2011.03.006
  133. 133.
    Strenger V, Aberle SW, Wendelin G, Pfurtscheller K, Nacheva EP, Zobel G, Nagel B (2010) Chromosomal integration of the HHV-6 genome as a possible cause of HHV-6 detection in cardiac tissues. J Clin Pathol 63:1129–1130PubMedCrossRefGoogle Scholar
  134. 134.
    Lohi O, Arola M, Lautenschlager I, Nacheva EP, Vettenranta K (2010) A high circulating copy number of HHV-6 due to chromosomal integration in a child with acute lymphoblastic leukemia. Pediatr Blood Cancer 55:1236–1238PubMedCrossRefGoogle Scholar
  135. 135.
    Doniger J, Muralidhar S, Rosenthal LJ (1999) Human cytomegalovirus and human herpesvirus 6 genes that transform and transactivate. Clin Microbiol Rev 12:367–382PubMedGoogle Scholar
  136. 136.
    Lusso P (2006) HHV-6 and the immune system: mechanisms of immunomodulation and viral escape. J Clin Virol 37(Suppl 1):4–10CrossRefGoogle Scholar
  137. 137.
    Arena A, Liberto MC, Iannello D, Capozza AB, Foca A (1999) Altered cytokine production after human herpes virus type 6 infection. New Microbiol 22:293–300PubMedGoogle Scholar
  138. 138.
    Watanabe H, Tohyama M, Kamijima M, Nakajima T, Yoshida T, Hashimoto K, Iijima M (2010) Occupational trichloroethylene hypersensitivity syndrome with human herpesvirus-6 and cytomegalovirus reactivation. Dermatology 221:17–22PubMedCrossRefGoogle Scholar
  139. 139.
    Cameron B, Flamand L, Juwana H, Middeldorp J, Naing Z, Rawlinson W, Ablashi D, Lloyd A (2010) Serological and virological investigation of the role of the herpesviruses EBV, CMV and HHV-6 in post-infective fatigue syndrome. J Med Virol 82:1684–1688PubMedCrossRefGoogle Scholar
  140. 140.
    Clark DA, Emery VC, Griffiths PD (2003) Cytomegalovirus, human herpesvirus-6, and human herpesvirus-7 in hematological patients. Semin Hematol 40:154–162PubMedCrossRefGoogle Scholar
  141. 141.
    Michalek J, Horvath R (2002) High incidence of Epstein-Barr virus, cytomegalovirus and human herpesvirus 6 infections in children with cancer. BMC Pediatr 2:1PubMedCrossRefGoogle Scholar
  142. 142.
    Leach CT, Pollock BH, McClain KL, Parmley RT, Murphy SB, Jenson HB (2002) Human herpesvirus 6 and cytomegalovirus infections in children with human immunodeficiency virus infection and cancer. Pediatr Infect Dis J 21:125–132PubMedCrossRefGoogle Scholar
  143. 143.
    Hillyer CD, Lankford KV, Roback JD, Gillespie TW, Silberstein LE (1999) Transfusion of the HIV-seropositive patient: immunomodulation, viral reactivation, and limiting exposure to EBV (HHV-4), CMV (HHV-5), and HHV-6, 7, and 8. Transfus Med Rev 13:1–17PubMedCrossRefGoogle Scholar
  144. 144.
    Michalek J, Horvath R, Benedik J, Hrstkova H (1999) Human herpesvirus-6 infection in children with cancer. Pediatr Hematol Oncol 16:423–430PubMedCrossRefGoogle Scholar
  145. 145.
    Knipe DM, Cliffe A (2008) Chromatin control of herpes simplex virus lytic and latent infection. Nat Rev Microbiol 6:211–221PubMedCrossRefGoogle Scholar
  146. 146.
    Jones C (1995) Cervical cancer: is herpes simplex virus type II a cofactor? Clin Microbiol Rev 8:549–556PubMedGoogle Scholar
  147. 147.
    Parker TM, Smith EM, Ritchie JM, Haugen TH, Vonka V, Turek LP, Hamsikova E (2006) Head and neck cancer associated with herpes simplex virus 1 and 2 and other risk factors. Oral Oncol 42:288–296PubMedCrossRefGoogle Scholar
  148. 148.
    Jensen K, Patel A, Larin A, Hoperia V, Saji M, Bauer A, Yim K, Hemming V, Vasko V (2010) Human herpes simplex viruses in benign and malignant thyroid tumours. J Pathol 221:193–200PubMedCrossRefGoogle Scholar
  149. 149.
    Prandovszky E, Horvath S, Gellert L, Kovacs SK, Janka Z, Toldi J, Shukla D, Valyi-Nagy T (2008) Nectin-1 (HveC) is expressed at high levels in neural subtypes that regulate radial migration of cortical and cerebellar neurons of the developing human and murine brain. J Neurovirol 14:164–172PubMedCrossRefGoogle Scholar
  150. 150.
    Guzman G, Oh S, Shukla D, Engelhard HH, Valyi-Nagy T (2006) Expression of entry receptor nectin-1 of herpes simplex virus 1 and/or herpes simplex virus 2 in normal and neoplastic human nervous system tissues. Acta Virol 50:59–66PubMedGoogle Scholar
  151. 151.
    Shukla D, Scanlan PM, Tiwari V, Sheth V, Clement C, Guzman-Hartman G, Dermody TS, Valyi-Nagy T (2006) Expression of nectin-1 in normal and herpes simplex virus type 1-infected murine brain. Appl Immunohistochem Mol Morphol 14:341–347PubMedCrossRefGoogle Scholar
  152. 152.
    Horvath S, Prandovszky E, Kis Z, Krummenacher C, Eisenberg RJ, Cohen GH, Janka Z, Toldi J (2006) Spatiotemporal changes of the herpes simplex virus entry receptor nectin-1 in murine brain during postnatal development. J Neurovirol 12:161–170PubMedCrossRefGoogle Scholar
  153. 153.
    Chauvin C, Suh M, Remy C, Benabid AL (1990) Failure to detect viral genomic sequences of three viruses (herpes simplex, simian virus 40 and adenovirus) in human and rat brain tumors. Ital J Neurol Sci 11:347–357PubMedCrossRefGoogle Scholar
  154. 154.
    Ochsner F (1981) Contamination of a glioma by the herpes virus. Schweiz Arch Neurol Neurochir Psychiatr 129:19–30PubMedGoogle Scholar
  155. 155.
    Frenkel N, Locker H, Cox B, Roizman B, Rapp F (1976) Herpes simplex virus DNA in transformed cells: sequence complexity in five hamster cell lines and one derived hamster tumor. J Virol 18:885–893PubMedGoogle Scholar
  156. 156.
    Aurelian L (1974) Persistence and expression of the herpes simplex virus type 2 genome in cervical tumor cells. Cancer Res 34:1126–1135PubMedGoogle Scholar
  157. 157.
    Roizman B, Frenkel N (1973) The transcription and state of herpes simplex virus DNA in productive infection and in human cervical cancer tissue. Cancer Res 33:1402–1416PubMedGoogle Scholar
  158. 158.
    Frenkel N, Roizman B, Cassai E, Nahmias A (1972) A DNA fragment of Herpes simplex 2 and its transcription in human cervical cancer tissue. Proc Natl Acad Sci USA 69:3784–3789PubMedCrossRefGoogle Scholar
  159. 159.
    Kessous-Elbaz A, Pelletier M, Cohen EA, Langelier Y (1989) Retention and expression of the left end subfragment of the herpes simplex virus type 2 BglII N DNA fragment do not correlate with tumorigenic conversion of NIH 3T3 cells. J Gen Virol 70(Pt 8):2171–2177PubMedCrossRefGoogle Scholar
  160. 160.
    Trimble JJ, Gay H, Docherty JJ (1986) Characterization of the tumor-associated 38-kd protein of herpes simplex virus type 2. J Reprod Med 31:399–409PubMedGoogle Scholar
  161. 161.
    Manservigi R, Cassai E, Deiss LP, Di Luca D, Segala V, Frenkel N (1986) Sequences homologous to two separate transforming regions of herpes simplex virus DNA are linked in two human genital tumors. Virology 155:192–201PubMedCrossRefGoogle Scholar
  162. 162.
    Iwasaka T, Smith C, Aurelian L, Ts’o PO (1985) The cervical tumor-associated antigen (ICP-10/AG-4) is encoded by the transforming region of the genome of herpes simplex virus type 2. Jpn J Cancer Res 76:946–958PubMedGoogle Scholar
  163. 163.
    Jiang X, Chentoufi AA, Hsiang C, Carpenter D, Osorio N, Benmohamed L, Fraser NW, Jones C, Wechsler SL (2011) The herpes simplex virus type 1 latency-associated transcript can protect neuron-derived C1300 and Neuro2A cells from granzyme B-induced apoptosis and CD8 T-cell killing. J Virol 85:2325–2332PubMedCrossRefGoogle Scholar
  164. 164.
    Nguyen ML, Blaho JA (2007) Apoptosis during herpes simplex virus infection. Adv Virus Res 69:67–97PubMedCrossRefGoogle Scholar
  165. 165.
    Thompson RL, Sawtell NM (2000) HSV latency-associated transcript and neuronal apoptosis. Science 289:1651PubMedCrossRefGoogle Scholar
  166. 166.
    Perng GC, Jones C, Ciacci-Zanella J, Stone M, Henderson G, Yukht A, Slanina SM, Hofman FM, Ghiasi H, Nesburn AB, Wechsler SL (2000) Virus-induced neuronal apoptosis blocked by the herpes simplex virus latency-associated transcript. Science 287:1500–1503PubMedCrossRefGoogle Scholar
  167. 167.
    Aravalli RN, Hu S, Rowen TN, Gekker G, Lokensgard JR (2006) Differential apoptotic signaling in primary glial cells infected with herpes simplex virus 1. J Neurovirol 12:501–510PubMedCrossRefGoogle Scholar
  168. 168.
    Yang CT, Song J, Bu X, Cong YS, Bacchetti S, Rennie P, Jia WW (2003) Herpes simplex virus type-1 infection upregulates cellular promoters and telomerase activity in both tumor and nontumor human cells. Gene Ther 10:1494–1502PubMedCrossRefGoogle Scholar
  169. 169.
    Hughes BA, Kimmel DW, Aksamit AJ (1993) Herpes zoster-associated meningoencephalitis in patients with systemic cancer. Mayo Clin Proc 68:652–655PubMedGoogle Scholar
  170. 170.
    Maiche AG, Kajanti MJ, Pyrhonen S (1992) Simultaneous disseminated herpes zoster and bacterial infection in cancer patients. Acta Oncol 31:681–683PubMedCrossRefGoogle Scholar
  171. 171.
    Affronti M, Malta R, Di Rosa S, Maggio AM, Vassallo L, Occhino C, Scardavi M, Renda M, Scarpinati P (1989) Thoracic herpes zoster treated with intravenous Acyclovir in three cancer patients. J Chemother 1:1304PubMedGoogle Scholar
  172. 172.
    Winston DJ, Eron LJ, Ho M, Pazin G, Kessler H, Pottage JC Jr, Gallagher J, Sartiano G, Ho WG, Champlin RE et al (1988) Recombinant interferon alpha-2a for treatment of herpes zoster in immunosuppressed patients with cancer. Am J Med 85:147–151PubMedCrossRefGoogle Scholar
  173. 173.
    Riegelman R (1982) Cancer and herpes zoster. N Engl J Med 307:1706–1707PubMedGoogle Scholar
  174. 174.
    Feldman S, Novak R, Malone W (1979) Case report—Herpes zoster affecting three noncontiguous dermatomes in a child with cancer. J Tenn Med Assoc 72:664–666PubMedGoogle Scholar
  175. 175.
    Feldman S, Hughes WT, Kim HY (1973) Herpes zoster in children with cancer. Am J Dis Child 126:178–184PubMedGoogle Scholar
  176. 176.
    Yoo KH, Park JH, Kim BJ, Kim MN, Song KY (2009) Herpes zoster duplex bilateralis in a patient with breast cancer. Cancer Res Treat 41:50–52PubMedCrossRefGoogle Scholar
  177. 177.
    Parikh PM, Davison SP (2008) Herpes zoster after reconstruction for head and neck cancer. Plast Reconstr Surg 122:211e–213ePubMedCrossRefGoogle Scholar
  178. 178.
    Djuric M, Jankovic L, Jovanovic T, Pavlica D, Brkic S, Knezevic A, Markovic D, Milasin J (2009) Prevalence of oral herpes simplex virus reactivation in cancer patients: a comparison of different techniques of viral detection. J Oral Pathol Med 38:167–173PubMedCrossRefGoogle Scholar
  179. 179.
    Aisenberg GM, Torres HA, Tarrand J, Safdar A, Bodey G, Chemaly RF (2009) Herpes simplex virus lower respiratory tract infection in patients with solid tumors. Cancer 115:199–206PubMedCrossRefGoogle Scholar
  180. 180.
    Gundling F, Rohrbach H, Nerlich A, Schepp W (2008) Herpes simplex virus esophagitis in an immunodeficient patient with non-small-cell lung cancer following a disseminated herpes zoster infection. Endoscopy 40(Suppl 2):157–158CrossRefGoogle Scholar
  181. 181.
    Grimm B, Padberg B, Ruhstaller T, Fleisch F, von Moos R (2008) Fatal herpes simplex virus hepatitis in a patient with esophageal cancer under radiochemotherapy. Onkologie 31:620–622PubMedCrossRefGoogle Scholar
  182. 182.
    Ramphal R, Grant RM, Dzolganovski B, Constantin J, Tellier R, Allen U, Weitzman S, Matlow A, Petric M, Sung L (2007) Herpes simplex virus in febrile neutropenic children undergoing chemotherapy for cancer: a prospective cohort study. Pediatr Infect Dis J 26:700–704PubMedCrossRefGoogle Scholar
  183. 183.
    Montgomery MT, Redding SW, LeMaistre CF (1986) The incidence of oral herpes simplex virus infection in patients undergoing cancer chemotherapy. Oral Surg Oral Med Oral Pathol 61:238–242PubMedCrossRefGoogle Scholar
  184. 184.
    Berg JW (1955) Esophageal herpes: a complication of cancer therapy. Cancer 8:731–740PubMedCrossRefGoogle Scholar
  185. 185.
    Spacca B, Mallucci C, Riordan A, Appleton R, Thorp N, Pizer B (2007) HSV encephalitis in a child with brain stem glioma: a rare complication of therapy. Case report and review of the neurosurgical literature. Childs Nerv Syst 23:1347–1350PubMedCrossRefGoogle Scholar
  186. 186.
    Bataller L, Dalmau J (2006) Herpes simplex encephalitis in a patient with cancer. J Neurooncol 78:211PubMedCrossRefGoogle Scholar
  187. 187.
    Krieger D, Wendtland B, Bruckmann H (1988) Herpes simplex encephalitis following irradiation of a brain stem glioma. Nervenarzt 59:50–54PubMedGoogle Scholar
  188. 188.
    Coppey J, Menezes S (1981) Enhanced reactivation of ultraviolet-damaged herpes virus in ultraviolet pretreated skin fibroblasts of cancer prone donors. Carcinogenesis 2:787–793PubMedCrossRefGoogle Scholar
  189. 189.
    Lytle CD, Benane SG, Bockstahler LE (1974) Ultraviolet-enhanced reactivation of Herpes virus in human tumor cells. Photochem Photobiol 20:91–94PubMedCrossRefGoogle Scholar
  190. 190.
    Minami M, Kita M, Yan XQ, Yamamoto T, Iida T, Sekikawa K, Iwakura Y, Imanishi J (2002) Role of IFN-gamma and tumor necrosis factor-alpha in herpes simplex virus type 1 infection. J Interferon Cytokine Res 22:671–676PubMedCrossRefGoogle Scholar
  191. 191.
    Mezhir JJ, Advani SJ, Smith KD, Darga TE, Poon AP, Schmidt H, Posner MC, Roizman B, Weichselbaum RR (2005) Ionizing radiation activates late herpes simplex virus 1 promoters via the p38 pathway in tumors treated with oncolytic viruses. Cancer Res 65:9479–9484PubMedCrossRefGoogle Scholar
  192. 192.
    Advani SJ, Sibley GS, Song PY, Hallahan DE, Kataoka Y, Roizman B, Weichselbaum RR (1998) Enhancement of replication of genetically engineered herpes simplex viruses by ionizing radiation: a new paradigm for destruction of therapeutically intractable tumors. Gene Ther 5:160–165PubMedCrossRefGoogle Scholar
  193. 193.
    Hadjipanayis CG, DeLuca NA (2005) Inhibition of DNA repair by a herpes simplex virus vector enhances the radiosensitivity of human glioblastoma cells. Cancer Res 65:5310–5316PubMedCrossRefGoogle Scholar
  194. 194.
    Sakihama K, Eizuru Y, Minamishima Y (1991) Differential susceptibility of a rat glioma cell line and its clones to herpes simplex virus types 1 and 2. Acta Virol 35:127–134PubMedGoogle Scholar
  195. 195.
    Smith CA, Lancz GJ (1982) Abortive infection of neural cells by herpes simplex virus type 2. Arch Virol 74:311–323PubMedCrossRefGoogle Scholar
  196. 196.
    Ando T, Arai H (1980) Stimulation of herpes simplex type I infection of C6 cells by trypsin-EDTA. J Gen Virol 48:319–328PubMedCrossRefGoogle Scholar
  197. 197.
    Adler R, Glorioso JC, Levine M (1978) Infection by herpes simplex virus and cells of nervous system origin: characterization of a non-permissive interaction. J Gen Virol 39:9–20PubMedCrossRefGoogle Scholar
  198. 198.
    Stowe RP, Mehta SK, Ferrando AA, Feeback DL, Pierson DL (2001) Immune responses and latent herpesvirus reactivation in spaceflight. Aviat Space Environ Med 72:884–891PubMedGoogle Scholar
  199. 199.
    Mehta SK, Stowe RP, Feiveson AH, Tyring SK, Pierson DL (2000) Reactivation and shedding of cytomegalovirus in astronauts during spaceflight. J Infect Dis 182:1761–1764PubMedCrossRefGoogle Scholar
  200. 200.
    Preston CM, Harman AN, Nicholl MJ (2001) Activation of interferon response factor-3 in human cells infected with herpes simplex virus type 1 or human cytomegalovirus. J Virol 75:8909–8916PubMedCrossRefGoogle Scholar
  201. 201.
    Heise MT, HWt Virgin (1995) The T-cell-independent role of gamma interferon and tumor necrosis factor alpha in macrophage activation during murine cytomegalovirus and herpes simplex virus infections. J Virol 69:904–909PubMedGoogle Scholar
  202. 202.
    Murphy JC, Fischle W, Verdin E, Sinclair JH (2002) Control of cytomegalovirus lytic gene expression by histone acetylation. EMBO J 21:1112–1120PubMedCrossRefGoogle Scholar
  203. 203.
    Pinnoji RC, Bedadala GR, George B, Holland TC, Hill JM, Hsia SC (2007) Repressor element-1 silencing transcription factor/neuronal restrictive silencer factor (REST/NRSF) can regulate HSV-1 immediate-early transcription via histone modification. Virol J 4:56PubMedCrossRefGoogle Scholar
  204. 204.
    Nguyen ML, Kraft RM, Blaho JA (2007) Susceptibility of cancer cells to herpes simplex virus-dependent apoptosis. J Gen Virol 88:1866–1875PubMedCrossRefGoogle Scholar
  205. 205.
    Fleck M, Mountz JD, Hsu HC, Wu J, Edwards CK 3rd, Kern ER (1999) Herpes simplex virus type 2 infection induced apoptosis in peritoneal macrophages independent of Fas and tumor necrosis factor-receptor signaling. Viral Immunol 12:263–275PubMedCrossRefGoogle Scholar
  206. 206.
    Watanabe D, Honda T, Nishio K, Tomita Y, Sugiura Y, Nishiyama Y (2000) Corneal infection of herpes simplex virus type 2–induced neuronal apoptosis in the brain stem of mice with expression of tumor suppressor gene (p53) and transcription factors. Acta Neuropathol 100:647–653PubMedCrossRefGoogle Scholar
  207. 207.
    Kulomaa P, Paavonen J, Lehtinen M (1992) Herpes simplex virus induces unscheduled DNA synthesis in virus-infected cervical cancer cell lines. Res Virol 143:351–359PubMedCrossRefGoogle Scholar
  208. 208.
    Song GY, DeJong G, Jia W (1999) Cell surface expression of MHC molecules in glioma cells infected with herpes simplex virus type-1. J Neuroimmunol 93:1–7PubMedCrossRefGoogle Scholar
  209. 209.
    Das MR, Gridley DS, Kettering JD (1991) Suppression of immune responses by herpes virus type 2-transformed murine tumor cells. Immunol Lett 30:37–45PubMedCrossRefGoogle Scholar
  210. 210.
    Lakshmi N, Kumar AG, Anand T, Reddy BK (1993) Sero-prevalence of herpes simplex virus type-2 among cancer cervix patients. Indian J Cancer 30:189–191PubMedGoogle Scholar
  211. 211.
    Larsson PA, Edstrom S, Westin T, Nordkvist A, Hirsch JM, Vahlne A (1991) Reactivity against herpes simplex virus in patients with head and neck cancer. Int J Cancer 49:14–18PubMedCrossRefGoogle Scholar
  212. 212.
    Davis JM, La Thangue NB, Taylor DL, Latchman DS, Anderson M, Tyms AS (1988) Cellular polypeptides overexpressed after herpes simplex infection permit virus subtyping and may help diagnose cervical cancer. Genitourin Med 64:321–326PubMedGoogle Scholar
  213. 213.
    te Velde ER, Aurelian L (1987) Antibodies to the herpes simplex virus type-2-induced tumor-associated antigen AG-4 as markers of recurrence in cervical cancer. Tumour Biol 8:26–33PubMedCrossRefGoogle Scholar
  214. 214.
    Stoian M, Suru M, Zaharia O, Hozoc M, Nastac E, Fleshler BA (1987) Possible relation between viruses and oromaxillofacial tumors. I. Demonstration of herpes antigens and anti-herpes antibodies. Virologie 38:25–34PubMedGoogle Scholar
  215. 215.
    Teglbjaerg CS, Feldborg R, Norrild B (1986) Immunological reactivity of human sera with individual herpes simplex proteins: a comparative study of sera from patients with preinvasive or invasive cervical cancer and from controls. J Med Virol 18:169–180PubMedCrossRefGoogle Scholar
  216. 216.
    Shillitoe EJ, Greenspan D, Greenspan JS, Silverman S Jr (1986) Five-year survival of patients with oral cancer and its association with antibody to herpes simplex virus. Cancer 58:2256–2259PubMedCrossRefGoogle Scholar
  217. 217.
    Shillitoe EJ (1985) Measured levels of antibody to the herpes simplex virus in patients with oral cancer and controls. J Dent Res 64:944PubMedGoogle Scholar
  218. 218.
    Vass-Sorensen M, Abeler V, Berle E, Pedersen B, Davy M, Thorsby E, Norrild B (1984) Prevalence of antibodies to herpes simplex virus and frequency of HLA antigens in patients with preinvasive and invasive cervical cancer. Gynecol Oncol 18:349–358PubMedCrossRefGoogle Scholar
  219. 219.
    Shillitoe EJ, Greenspan D, Greenspan JS, Silverman S Jr (1984) Antibody to early and late antigens of herpes simplex virus type 1 in patients with oral cancer. Cancer 54:266–273PubMedCrossRefGoogle Scholar
  220. 220.
    Kumari TV, Harikumar T, Prabha B, Sasidharan VK, Vasudevan DM (1984) Detection of antibodies against herpes simplex virus in patients with oral cancer. Indian J Cancer 21:137–140PubMedGoogle Scholar
  221. 221.
    Chiphangwi JD (1984) Antibodies to membrane antigens of herpes simplex virus type-2 infected cells and HSV-2 specific antibodies in patients with cervical cancer in Malawi. IARC Sci Publ 63:465–470Google Scholar
  222. 222.
    Wentz WB, Heggie AD, Anthony DD, Reagan JW (1983) Effect of prior immunization on induction of cervical cancer in mice by herpes simplex virus type 2. Science 222:1128–1129PubMedCrossRefGoogle Scholar
  223. 223.
    Wrensch M, Weinberg A, Wiencke J, Miike R, Sison J, Wiemels J, Barger G, DeLorenze G, Aldape K, Kelsey K (2005) History of chickenpox and shingles and prevalence of antibodies to varicella-zoster virus and three other herpesviruses among adults with glioma and controls. Am J Epidemiol 161:929–938PubMedCrossRefGoogle Scholar
  224. 224.
    Wrensch M, Weinberg A, Wiencke J, Miike R, Barger G, Kelsey K (2001) Prevalence of antibodies to four herpesviruses among adults with glioma and controls. Am J Epidemiol 154:161–165PubMedCrossRefGoogle Scholar
  225. 225.
    Shimura T, Sugisaki Y, Fukino K, Node Y, Teramoto A, Kawamoto M (2001) Detection of Epstein-Barr virus DNA and expression of CD30 antigen in primary anaplastic diffuse large B-cell lymphoma of the brain. Brain Tumor Pathol 18:161–165PubMedCrossRefGoogle Scholar
  226. 226.
    Murphy JK (1999) Epstein-Barr virus and primary brain lymphomas. Am J Clin Pathol 112:881–882PubMedGoogle Scholar
  227. 227.
    Lee J, Kotliarova S, Kotliarov Y, Li A, Su Q, Donin NM, Pastorino S, Purow BW, Christopher N, Zhang W, Park JK, Fine HA (2006) Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. Cancer Cell 9:391–403PubMedCrossRefGoogle Scholar
  228. 228.
    Gürsel DB, Beyene RT, Hofstetter C, Greenfield JP, Souweidane MM, Kaplitt M, Arango-Lievano M, Howard B, Boockvar JA (2011) Optimization of glioblastoma multiforme stem cell isolation, transfection, and transduction. J Neuro Oncol. doi: 10.1007/s11060-011-0528-2
  229. 229.
    Ryan K (2004) Sherris Medical Microbiology, 4th edn. McGraw Hill, New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2011

Authors and Affiliations

  • Alexander Kofman
    • 1
  • Lucasz Marcinkiewicz
    • 1
  • Evan Dupart
    • 1
  • Anton Lyshchev
    • 3
  • Boris Martynov
    • 4
  • Anatolii Ryndin
    • 5
  • Elena Kotelevskaya
    • 3
  • Jay Brown
    • 1
  • David Schiff
    • 2
  • Roger Abounader
    • 1
    • 2
  1. 1.Department of MicrobiologyUniversity of VirginiaCharlottesvilleUSA
  2. 2.Department of Cancer CenterUniversity of VirginiaCharlottesvilleUSA
  3. 3.St. Petersburg State Department of HealthLaboratory of Molecular Genetics, Hospital #31St. PetersburgRussia
  4. 4.S.M.Kirov Medical AcademySt. PetersburgRussia
  5. 5.Clinical Diagnostic CenterSt. PetersburgRussia

Personalised recommendations