Journal of Neuro-Oncology

, Volume 106, Issue 1, pp 81–88 | Cite as

The toxicity of intrathecal bevacizumab in a rabbit model of leptomeningeal carcinomatosis

  • Priscilla K. Brastianos
  • Harry C. Brastianos
  • Wesley Hsu
  • Daniel M. Sciubba
  • Thomas Kosztowski
  • Betty M. Tyler
  • Violette Renard Recinos
  • Peter Burger
  • Stuart A. Grossman
Laboratory Investigation - Human/Animal Tissue


Leptomeningeal carcinomatosis (LC) is a devastating complication of cancer. Intrathecal administration of cytotoxic chemotherapy adds little to survival which is measured in weeks. The potential toxicities and efficacy of intrathecally administered anti-angiogenic agents in this setting have not previously been explored. A well-characterized animal model was used to evaluate the neurotoxicity of intraventricularly administered bevacizumab (BCM). Thirty-three New Zealand White Rabbits were studied. Subcutaneous reservoirs and ventricular catheters (SRVC) were placed in eight rabbits, which were randomized to receive weekly intraventricular saline with or without BCM for four weeks. These rabbits were euthanized on day 36 and the brains were examined by a blinded neuropathologist. Twenty-five additional rabbits underwent cisternal injection of VX2 carcinoma cells with or without a single dose of BCM and were followed for survival. No clinical manifestations of neurotoxicity were noted in rabbits treated with intraventricular BCM. Similarly, no evidence of BCM neurotoxicity was identified in autopsied animals. The median survival of evaluable rabbits with LC treated with intraventricular saline (N = 13) was 15 days compared to 18 days for the animals receiving VX2 and one dose of BCM (N = 12). Conclusion: Intraventricular BCM can be administered to rabbits without clinical or pathologic neurotoxicity. Survival following one dose of BCM in rabbits with LC should be cautiously interpreted given uncertainties regarding the dose, schedule, and limited expected benefit of this non-rabbit antibody. This neurotoxicity study provides safety data to allow phase I/II studies in humans with treatment refractory LC.


Intrathecal bevacizumab Carcinomatous meningitis Leptomeningeal carcinomatosis Neoplastic meningitis Rabbit model of leptomeningeal carcinomatosis 


Conflict of interest



  1. 1.
    Grossman SA, Krabak MJ (1999) Leptomeningeal carcinomatosis. Cancer Treat Rev 25(2):103–119PubMedCrossRefGoogle Scholar
  2. 2.
    Chamberlain MC (2006) Neoplastic meningitis. Neurologist 12(4):179–187PubMedCrossRefGoogle Scholar
  3. 3.
    NCCN Clinical Practice Guidelines in Oncology (2011). 34–40Google Scholar
  4. 4.
    Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285(21):1182–1186PubMedCrossRefGoogle Scholar
  5. 5.
    Ferrara N (2002) VEGF and the quest for tumour angiogenesis factors. Nat Rev Cancer 2(10):795–803PubMedCrossRefGoogle Scholar
  6. 6.
    Kerbel RS (2008) Tumor angiogenesis. N Engl J Med 358(19):2039–2049PubMedCrossRefGoogle Scholar
  7. 7.
    Ranieri G, Patruno R, Ruggieri E, Montemurro S, Valerio P, Ribatti D (2006) Vascular endothelial growth factor (VEGF) as a target of bevacizumab in cancer: from the biology to the clinic. Curr Med Chem 13(16):1845–1857PubMedCrossRefGoogle Scholar
  8. 8.
    Reijneveld JC, Taphoorn MJ, Kerckhaert OA, Drixler TA, Boogerd W, Voest EE (2003) Angiostatin prolongs the survival of mice with leptomeningeal metastases. Eur J Clin Invest 33(1):76–81PubMedCrossRefGoogle Scholar
  9. 9.
    Stockhammer G, Poewe W, Burgstaller S, Deisenhammer F, Muigg A, Kiechl S, Schmutzhard E, Maier H, Felber S, Schumacher P, Gunsilius E, Gastl G (2000) Vascular endothelial growth factor in CSF: a biological marker for carcinomatous meningitis. Neurology 54(8):1670–1676PubMedGoogle Scholar
  10. 10.
    Mordenti J, Thomsen K, Licko V, Berleau L, Kahn JW, Cuthbertson RA, Duenas ET, Ryan AM, Schofield C, Berger TW, Meng YG, Cleland J (1999) Intraocular pharmacokinetics and safety of a humanized monoclonal antibody in rabbits after intravitreal administration of a solution or a PLGA microsphere formulation. Toxicol Sci 52(1):101–106PubMedCrossRefGoogle Scholar
  11. 11.
    Mordenti J, Cuthbertson RA, Ferrara N, Thomsen K, Berleau L, Licko V, Allen PC, Valverde CR, Meng YG, Fei DT, Fourre KM, Ryan AM (1999) Comparisons of the intraocular tissue distribution, pharmacokinetics, and safety of 125I-labeled full-length and Fab antibodies in rhesus monkeys following intravitreal administration. Toxicol Pathol 27(5):536–544PubMedCrossRefGoogle Scholar
  12. 12.
    Mordenti J, Thomsen K, Licko V, Chen H, Meng YG, Ferrara N (1999) Efficacy and concentration–response of murine anti-VEGF monoclonal antibody in tumor-bearing mice and extrapolation to humans. Toxicol Pathol 27(1):14–21PubMedCrossRefGoogle Scholar
  13. 13.
    Sandler A, Gray R, Perry MC, Brahmer J, Schiller JH, Dowlati A, Lilenbaum R, Johnson DH (2006) Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. N Engl J Med 355(24):2542–2550PubMedCrossRefGoogle Scholar
  14. 14.
    Spaide RF, Fisher YL (2006) Intravitreal bevacizumab (Avastin) treatment of proliferative diabetic retinopathy complicated by vitreous hemorrhage. Retina 26(3):275–278PubMedCrossRefGoogle Scholar
  15. 15.
    Bakri SJ, Snyder MR, Reid JM, Pulido JS, Ezzat MK, Singh RJ (2007) Pharmacokinetics of intravitreal ranibizumab (Lucentis). Ophthalmology 114(12):2179–2182PubMedCrossRefGoogle Scholar
  16. 16.
    Frank JA, Girton M, Dwyer AJ, Wright DC, Cohen PJ, Doppman JL (1988) Meningeal carcinomatosis in the VX2 rabbit tumor model: detection with Gd-DTPA-enhanced MR imaging. Radiology 167(3):825–829PubMedGoogle Scholar
  17. 17.
    Phillips PC, Than TT, Cork LC, Hilton J, Carson BS, Colvin OM, Grochow LB (1992) Intrathecal 4-hydroperoxycyclophosphamide: neurotoxicity, cerebrospinal fluid pharmacokinetics, and antitumor activity in a rabbit model of VX2 leptomeningeal carcinomatosis. Cancer Res 52(22):6168–6174PubMedGoogle Scholar
  18. 18.
    van der Flier M, Coenjaerts FE, Mwinzi PN, Rijkers E, Ruyken M, Scharringa J, Kimpen JL, Hoepelman AI, Geelen SP (2005) Antibody neutralization of vascular endothelial growth factor (VEGF) fails to attenuate vascular permeability and brain edema in experimental pneumococcal meningitis. J Neuroimmunol 160(1–2):170–177PubMedCrossRefGoogle Scholar
  19. 19.
    Feiner L, Barr EE, Shui YB, Holekamp NM, Brantley MA Jr (2006) Safety of intravitreal injection of bevacizumab in rabbit eyes. Retina 26(8):882–888. doi: 10.1097/01.iae.0000230717.85319.f5 PubMedCrossRefGoogle Scholar
  20. 20.
    Manzano RP, Peyman GA, Khan P, Kivilcim M (2006) Testing intravitreal toxicity of bevacizumab (Avastin). Retina 26(3):257–261PubMedCrossRefGoogle Scholar
  21. 21.
    Kim WJ, Jeong HO, Chung SK (2010) The effect of bevacizumab on corneal neovascularization in rabbits. Korean J Ophthalmol 24(4):230–236. doi: 10.3341/kjo.2010.24.4.230 PubMedCrossRefGoogle Scholar
  22. 22.
    Avery RL, Pieramici DJ, Rabena MD, Castellarin AA, Nasir MA, Giust MJ (2006) Intravitreal bevacizumab (Avastin) for neovascular age-related macular degeneration. Ophthalmology 113 (3):363–372 e365. doi: 10.1016/j.ophtha.2005.11.019 Google Scholar
  23. 23.
    Bashshur ZF, Bazarbachi A, Schakal A, Haddad ZA, El Haibi CP, Noureddin BN (2006) Intravitreal bevacizumab for the management of choroidal neovascularization in age-related macular degeneration. Am J Ophthalmol 142(1):1–9. doi: 10.1016/j.ajo.2006.02.037 PubMedCrossRefGoogle Scholar
  24. 24.
    Amselem L, Cervera E, Diaz-Llopis M, Montero J, Garcia-Pous M, Udaondo P, Garcia-Delpech S, Salom D (2007) Intravitreal bevacizumab (Avastin) for choroidal metastasis secondary to breast carcinoma: short-term follow-up. Eye 21(4):566–567. doi: 10.1038/sj.eye.6702647 PubMedGoogle Scholar
  25. 25.
    Pullen RG (1985) Effect of ventricular tonicity upon cerebrospinal fluid production in rabbits. J Physiol 362:273–283PubMedGoogle Scholar
  26. 26.
    Samphilipo MA Jr, Hassenbusch SJ, Grochow LB, Starr FL 3rd, Anderson JH (1987) A reservoir model for repeated CSF access in the rabbit. J Neurosci Methods 22(1):47–52PubMedCrossRefGoogle Scholar
  27. 27.
    Langer R, Folkman J (1976) Polymers for the sustained release of proteins and other macromolecules. Nature 263(5580):797–800PubMedCrossRefGoogle Scholar
  28. 28.
    Georges E, Breitburd F, Jibard N, Orth G (1985) Two Shope papillomavirus-associated VX2 carcinoma cell lines with different levels of keratinocyte differentiation and transplantability. J Virol 55(1):246–250PubMedGoogle Scholar
  29. 29.
    Lin YS, Nguyen C, Mendoza JL, Escandon E, Fei D, Meng YG, Modi NB (1999) Preclinical pharmacokinetics, interspecies scaling, and tissue distribution of a humanized monoclonal antibody against vascular endothelial growth factor. J Pharmacol Exp Ther 288(1):371–378PubMedGoogle Scholar
  30. 30.
    Gerber HP, Ferrara N (2005) Pharmacology and pharmacodynamics of bevacizumab as monotherapy or in combination with cytotoxic therapy in preclinical studies. Cancer Res 65(3):671–680PubMedGoogle Scholar
  31. 31.
    Wedam SB, Low JA, Yang SX, Chow CK, Choyke P, Danforth D, Hewitt SM, Berman A, Steinberg SM, Liewehr DJ, Plehn J, Doshi A, Thomasson D, McCarthy N, Koeppen H, Sherman M, Zujewski J, Camphausen K, Chen H, Swain SM (2006) Antiangiogenic and antitumor effects of bevacizumab in patients with inflammatory and locally advanced breast cancer. J Clin Oncol 24(5):769–777PubMedCrossRefGoogle Scholar
  32. 32.
    Hurwitz H, Fehrenbacher L, Novotny W, Cartwright T, Hainsworth J, Heim W, Berlin J, Baron A, Griffing S, Holmgren E, Ferrara N, Fyfe G, Rogers B, Ross R, Kabbinavar F (2004) Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 350(23):2335–2342PubMedCrossRefGoogle Scholar
  33. 33.
    Rich RM, Rosenfeld PJ, Puliafito CA, Dubovy SR, Davis JL, Flynn HW Jr, Gonzalez S, Feuer WJ, Lin RC, Lalwani GA, Nguyen JK, Kumar G (2006) Short-term safety and efficacy of intravitreal bevacizumab (Avastin) for neovascular age-related macular degeneration. Retina 26(5):495–511PubMedCrossRefGoogle Scholar
  34. 34.
    Zondor SD, Medina PJ (2004) Bevacizumab: an angiogenesis inhibitor with efficacy in colorectal and other malignancies. Ann Pharmacother 38(7–8):1258–1264PubMedGoogle Scholar
  35. 35.
    Vredenburgh JJ, Desjardins A, Herndon JE 2nd, Marcello J, Reardon DA, Quinn JA, Rich JN, Sathornsumetee S, Gururangan S, Sampson J, Wagner M, Bailey L, Bigner DD, Friedman AH, Friedman HS (2007) Bevacizumab plus irinotecan in recurrent glioblastoma multiforme. J Clin Oncol 25(30):4722–4729PubMedCrossRefGoogle Scholar
  36. 36.
    Vredenburgh JJ, Desjardins A, Herndon JE 2nd, Dowell JM, Reardon DA, Quinn JA, Rich JN, Sathornsumetee S, Gururangan S, Wagner M, Bigner DD, Friedman AH, Friedman HS (2007) Phase II trial of bevacizumab and irinotecan in recurrent malignant glioma. Clin Cancer Res 13(4):1253–1259PubMedCrossRefGoogle Scholar
  37. 37.
    Gordon MS, Cunningham D (2005) Managing patients treated with bevacizumab combination therapy. Oncology 69(Suppl 3):25–33PubMedCrossRefGoogle Scholar
  38. 38.
    Costa RA, Jorge R, Calucci D, Cardillo JA, Melo LA Jr, Scott IU (2006) Intravitreal bevacizumab for choroidal neovascularization caused by AMD (IBeNA Study): results of a phase 1 dose-escalation study. Investg Ophthalmol Vis Sci 47(10):4569–4578CrossRefGoogle Scholar
  39. 39.
    Krohne TU, Eter N, Holz FG, Meyer CH (2008) Intraocular pharmacokinetics of bevacizumab after a single intravitreal injection in humans. Am J Ophthalmol 146(4):508–512PubMedCrossRefGoogle Scholar
  40. 40.
    Li K, Zhang G, Zhao J, Wang X, Li Y, Hu Y (2010) Vascular endothelial growth factor antisense oligonucleotides inhibit leptomeningeal metastasis in vivo. Med Oncol. 1–7. doi: 10.1007/s12032-010-9580-6
  41. 41.
    Inan UU, Avci B, Kusbeci T, Kaderli B, Avci R, Temel SG (2007) Preclinical safety evaluation of intravitreal injection of full-length humanized vascular endothelial growth factor antibody in rabbit eyes. Investg Ophthalmol Vis Sci 48(4):1773–1781CrossRefGoogle Scholar
  42. 42.
    Jain RK (2001) Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy. Nat Med 7(9):987–989PubMedCrossRefGoogle Scholar
  43. 43.
    Jain RK (2005) Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307(5706):58–62PubMedCrossRefGoogle Scholar
  44. 44.
    Tong RT, Boucher Y, Kozin SV, Winkler F, Hicklin DJ, Jain RK (2004) Vascular normalization by vascular endothelial growth factor receptor 2 blockade induces a pressure gradient across the vasculature and improves drug penetration in tumors. Cancer Res 64(11):3731–3736PubMedCrossRefGoogle Scholar
  45. 45.
    Winkler F, Kozin SV, Tong RT, Chae SS, Booth MF, Garkavtsev I, Xu L, Hicklin DJ, Fukumura D, di Tomaso E, Munn LL, Jain RK (2004) Kinetics of vascular normalization by VEGFR2 blockade governs brain tumor response to radiation: role of oxygenation, angiopoietin-1, and matrix metalloproteinases. Cancer Cell 6(6):553–563PubMedGoogle Scholar
  46. 46.
    Willett CG, Boucher Y, di Tomaso E, Duda DG, Munn LL, Tong RT, Chung DC, Sahani DV, Kalva SP, Kozin SV, Mino M, Cohen KS, Scadden DT, Hartford AC, Fischman AJ, Clark JW, Ryan DP, Zhu AX, Blaszkowsky LS, Chen HX, Shellito PC, Lauwers GY, Jain RK (2004) Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer. Nat Med 10(2):145–147. doi: 10.1038/nm988 PubMedCrossRefGoogle Scholar
  47. 47.
    Willett CG, Boucher Y, Duda DG, di Tomaso E, Munn LL, Tong RT, Kozin SV, Petit L, Jain RK, Chung DC, Sahani DV, Kalva SP, Cohen KS, Scadden DT, Fischman AJ, Clark JW, Ryan DP, Zhu AX, Blaszkowsky LS, Shellito PC, Mino-Kenudson M, Lauwers GY (2005) Surrogate markers for antiangiogenic therapy and dose-limiting toxicities for bevacizumab with radiation and chemotherapy: continued experience of a phase I trial in rectal cancer patients. J Clin Oncol: Off J Am Soc Clin Oncol 23(31):8136–8139. doi: 10.1200/JCO.2005.02.5635 CrossRefGoogle Scholar
  48. 48.
    Kabbinavar F, Hurwitz HI, Fehrenbacher L, Meropol NJ, Novotny WF, Lieberman G, Griffing S, Bergsland E (2003) Phase II, randomized trial comparing bevacizumab plus fluorouracil (FU)/leucovorin (LV) with FU/LV alone in patients with metastatic colorectal cancer. J Clin Oncol Off J Am Soc Clin Oncol 21(1):60–65CrossRefGoogle Scholar
  49. 49.
    Levin VA, Landahl HD (1985) Pharmacokinetic approaches to drug distribution in the cerebrospinal fluid based on ventricular administration in beagle dogs. J Pharmacokinet Biopharm 13(4):387–403PubMedCrossRefGoogle Scholar
  50. 50.
    Laske DW, Muraszko KM, Oldfield EH, DeVroom HL, Sung C, Dedrick RL, Simon TR, Colandrea J, Copeland C, Katz D, Greenfield L, Groves ES, Houston LL, Youle RJ (1997) Intraventricular immunotoxin therapy for leptomeningeal neoplasia. Neurosurgery 41(5):1039–1049 discussion 1049–1051PubMedCrossRefGoogle Scholar
  51. 51.
    Kramer K, Cheung NK, Humm J, DiResta G, Arbit E, Larson S, Finn R, Rosenblum M, Nguyen H, Gonzalez G, Liu C, Yang YF, Mendelsohn ME, Gillio AP (1997) Pharmacokinetics and acute toxicology of intraventricular 131 I-monoclonal antibody targeting disialoganglioside in non-human primates. J Neurooncol 35(2):101–111PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2011

Authors and Affiliations

  • Priscilla K. Brastianos
    • 1
    • 2
  • Harry C. Brastianos
    • 3
    • 4
  • Wesley Hsu
    • 5
  • Daniel M. Sciubba
    • 5
  • Thomas Kosztowski
    • 5
  • Betty M. Tyler
    • 5
  • Violette Renard Recinos
    • 5
  • Peter Burger
    • 6
  • Stuart A. Grossman
    • 3
  1. 1.Department of Medical OncologyDana-Farber Cancer Institute, Harvard Medical SchoolBostonUSA
  2. 2.Department of Medical Oncology, Massachusetts General HospitalHarvard Medical SchoolBostonUSA
  3. 3.Department of OncologyJohns Hopkins UniversityBaltimoreUSA
  4. 4.Department of MedicineMcMaster UniversityHamiltonCanada
  5. 5.Department of NeurosurgeryJohns Hopkins UniversityBaltimoreUSA
  6. 6.Department of PathologyJohns Hopkins UniversityBaltimoreUSA

Personalised recommendations