Journal of Neuro-Oncology

, Volume 105, Issue 1, pp 91–101 | Cite as

Cell invasion, motility, and proliferation level estimate (CIMPLE) maps derived from serial diffusion MR images in recurrent glioblastoma treated with bevacizumab

  • Benjamin M. Ellingson
  • Timothy F. Cloughesy
  • Albert Lai
  • Phioanh L. Nghiemphu
  • Whitney B. Pope
Clinical Study - Patient Study

Abstract

Microscopic invasion of tumor cells and undetected tumor proliferation is the primary reason for a dismal prognosis in glioblastoma patients. Identification and quantification of spatially localized brain regions undergoing high rates of cell migration and proliferation is critical for improving patient survival; however, there are currently no non-invasive imaging biomarkers for estimating proliferation and migration rates of human gliomas in vivo. To accomplish this, we developed CIMPLE (cell invasion, motility, and proliferation level estimates) image maps using serial diffusion MRI scans and a solution to a glioma growth model equation. CIMPLE represent a novel method of quantifying the level of aggressive malignant behavior. In the current pilot study, we demonstrate the utility of CIMPLE maps to predict progression free survival (PFS) and overall survival (OS) in 26 recurrent glioblastoma patients treated with bevacizumab from our Neuro-Oncology database. Voxel-wise estimates of cell proliferation rate predicted spatial regions of contrast enhancement in 35% of patients. A linear correlation was found between the mean proliferation rate and progression-free survival (PFS; P < 0.0001) as well as overall survival (OS; P = 0.0093). Similarly, the mean proliferation rate was able to stratify patients with early and late PFS as well as OS.

Keywords

Diffusion MRI Glioblastoma Bevacizumab Biomarkers CIMPLE maps 

Notes

Acknowledgments

This work was supported by Brain Tumor Funders Collaborative (WBP); Art of the Brain (TFC); Ziering Family Foundation in memory of Sigi Ziering (TFC); Singleton Family Foundation (TFC); Clarence Klein Fund for Neuro-Oncology (TFC).

References

  1. 1.
    Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Morosi C, Bogdahn U, Curschmann J, Janzer RC, Ludwin SK, Gorlia T, Allgeier A, Lacombe D, Cairncross JG, Eisenhauer E, Mirimanoff RO (2005) Radiotherapy plus concomitant and adjuvent temozolomide for glioblastoma. N Engl J Med 352:987–996PubMedCrossRefGoogle Scholar
  2. 2.
    Murakami M, Jay V, Al-Shail E, Rutka JT: Brain tumors that disseminate along cerebrospinal fluid pathways and beyond (1998) In: Mikkelsen T, Bjerkvig R, Laerum OD, Rosenblum ML (eds) Brain tumor invasion: biological, clinical and therapeutic considerations. Wiley-Liss, Inc., New York, pp 111–132Google Scholar
  3. 3.
    Ellingson BM, Rand SD, Malkin MG, Prost R, Connelly JM, LaViolette PS, Bedekar DP, Schmainda KM (2010) Spatially quantifying microscopic tumor invasion and proliferation using a voxel-wise analytical solution to a glioma growth model and serial diffusion MRI. Proc Intl Soc Mag Reson Med 18:612Google Scholar
  4. 4.
    Ellingson BM, LaViolette PS, Rand SD, Malkin MG, Connelly JM, Mueller WM, Prost RW, Schmainda KM (2011) Spatially quantifying microscopic tumor invasion and proliferation using a voxel-wise solution to a glioma growth model and serial diffusion MRI. Magn Reson Med 65(4):1131–1143PubMedCrossRefGoogle Scholar
  5. 5.
    Ellingson BM, Malkin MG, Rand SD, Connelly JM, Quinsey C, LaViolette PS, Bedekar DP, Schmainda KM (2010) Validation of functional diffusion maps (fDMs) as a biomarker for human glioma cellularity. J Magn Reson Imaging 31:538–548PubMedCrossRefGoogle Scholar
  6. 6.
    Rockne R, Alvord EC Jr, Rockhill JK, Swanson KR (2009) A mathematical model for brain tumor response to radiation therapy. J Math Biol 58:561–578PubMedCrossRefGoogle Scholar
  7. 7.
    Swanson KR, Rostomily RC, Alvord EC Jr (2008) A mathematical modelling tool for predicting survival of individual patients following resection of glioblastoma: a proof or principle. Br J Cancer 98:113–119PubMedCrossRefGoogle Scholar
  8. 8.
    Swanson KR, Alvord EC Jr, Murray JD (2002) Quantifying efficacy of chemotherapy of brain tumors with homogeneous and heterogeneous drug delivery. Acta Biotheor 50:223–237PubMedCrossRefGoogle Scholar
  9. 9.
    Reese TG, Heid O, Weisskoff RM, Wedeen VJ (2003) Reduction of eddy-current-induced distortion in diffusion MRI using a twice-refocused spin echo. Magn Reson Med 49:177–182PubMedCrossRefGoogle Scholar
  10. 10.
    Macdonald DR, Cascino TL, Schold SC Jr, Cairncross JG (1990) Response criteria for phase II studies of supratentorial malignant glioma. J Clin Oncol 8:1277–1280PubMedGoogle Scholar
  11. 11.
    Pope WB, Sayre J, Perlina A, Villablanca JP, Mischel PS, Cloughesy TF (2005) MR imaging correlates of survival in patients with high-grade gliomas. AJNR Am J Neuroradiol 26:2466–2474PubMedGoogle Scholar
  12. 12.
    Farlow SJ (1993) Partial differential equations for scientists and engineers. Wiley, New YorkGoogle Scholar
  13. 13.
    Cox RW, Jesmanowicz A (1999) Real-time 3D image registration for functional MRI. Magn Reson Med 42:1014–1018PubMedCrossRefGoogle Scholar
  14. 14.
    Nghiemphu PL, Liu W, Lee Y, Than T, Graham C, Lai A, Green RM, Pope WB, Liau LM, Mischel PS, Nelson SF, Elashoff R, Cloughesy TF (2009) Bevacizumab and chemotherapy for recurrent glioblastoma: a single-institution experience. Neurology 72:1217–1222PubMedCrossRefGoogle Scholar
  15. 15.
    Vredenburgh JJ, Desjardins A, Herndon JE, Dowell JM, Reardon DA, Quinn JA, Rich JN, Sathornsumetee S, Gururangan S, Wagner M, Bigner DD, Friedman AH, Friedman HS (2007) Phase II trial of bevacizumab and irinotecan in recurrent malignant glioma. Clin Cancer Res 13:1253–1259PubMedCrossRefGoogle Scholar
  16. 16.
    Friedman AH, Prados MD, Wen PY, Mikkelsen T, Schiff D, Abrey LE, Yung WK, Paleologos N, Nicholas MK, Jensen R, Vredenburgh J, Huang J, Zheng M, Cloughesy T (2009) Bevacizumab alone and in combination with irinotecan in recurrent glioblastoma. J Clin Oncol 27:4733–4740PubMedCrossRefGoogle Scholar
  17. 17.
    Iwamoto FM, Abrey LE, Beal K, Gutin PH, Rosenblum ML, Reuter VE, DeAngelis LM, Lassman AB (2009) Patterns of relapse and prognosis after bevacizumab failure in recurrent glioblastoma. Neurology 73:1200–1206PubMedCrossRefGoogle Scholar
  18. 18.
    Norden AD, Young GS, Setayesh K, Muzikansky A, Klufas R, Ross GL, Ciampa AS, Ebbeling LG, Levy B, Drappatz J, Kesari S, Wen PY (2008) Bevacizumab for recurrent malignant gliomas: efficacy, toxicity, and patterns of recurrence. Neurology 70:779–787PubMedCrossRefGoogle Scholar
  19. 19.
    Pope WB, Kim HJ, Huo J, Alger J, Brown MS, Gjertson D, Sai V, Young JR, Tekchandani L, Cloughesy TF, Mischel PS, Lai A, Nghiemphu PL, Rahmanuddin S, Goldin J (2009) Recurrent glioblastoma multiforme: ADC histogram analysis predicts response to bevacizumab treatment. Radiology 252:182–189PubMedCrossRefGoogle Scholar
  20. 20.
    Ellingson BM, Malkin MG, Rand SD, LaViolette PS, Connelly JM, Mueller WM, Schmainda KM (2011) Volumetric analysis of functional diffusion maps (fDMs) is a predictive imaging biomarker for cytotoxic and anti-angiogenic treatments in malignant gliomas. J Neurooncol 102(1):95–103PubMedCrossRefGoogle Scholar
  21. 21.
    Sorensen AG, Batchelor TT, Zhang WT, Chen PJ, Yeo P, Wang M, Jennings D, Wen PY, Lahdenranta J, Ancukiewicz M, di Tomaso E, Duda DG, Jain RK (2009) A “vascular normalization index” as potential mechanistic biomarker to predict survival after a single dose of cediranib in recurrent glioblastoma patients. Cancer Res 69:5296–5300PubMedCrossRefGoogle Scholar
  22. 22.
    Chen W, Delaloye S, Silverman DH, Geist C, Czernin J, Sayre J, Satyamurthy N, Pope W, Lai A, Phelps ME, Cloughesy T (2007) Predicting treatment response of malignant gliomas to bevacizumab and irinotecan by imaging proliferation with [18F] fluorothymidine positron emission tomography: a pilot study. J Clin Oncol 25:4714–4721PubMedCrossRefGoogle Scholar
  23. 23.
    Sawlani RN, Raizer J, Horowitz SW, Shin W, Grimm SA, Chandler JP, Levy R, Getch C, Carroll TJ (2010) Glioblastoma: a method for predicting response to antiangiogenic chemotherapy by using MR perfusion imaging—pilot study. Radiology 255:622–628PubMedCrossRefGoogle Scholar
  24. 24.
    Kelly PJ, Daumas-Duport C, Scheithauer BW, Kall BA, Kispert DB (1987) Stereotactic histological correlations of computed tomography- and magnetic resonance imaging-defined abnormalities in patients with glial neoplasms. Mayo Clin Proc 62:450–459PubMedGoogle Scholar
  25. 25.
    Kelly PJ, Daumas-Duport C, Kispert DB, Kall BA, Scheithauer BW, Illig JJ (1987) Imaging-based stereotaxic serial biopsies in untreated intracranial glial neoplasms. J Neurosurg 66:865–874PubMedCrossRefGoogle Scholar
  26. 26.
    Verhoeff JJ, van Tellingen O, Claes A, Stalpers LJ, van Linde ME, Richel DJ, Leenders WP, van Furth WR (2009) Concerns about anti-angiogenic treatment in patients with glioblastoma multiforme. BMC Cancer 9:444PubMedCrossRefGoogle Scholar
  27. 27.
    Norden AD, Drappatz J, Wen PY (2009) Antiangiogenic therapies for high-grade glioma. Nat Rev Neurol 5:610–620PubMedCrossRefGoogle Scholar
  28. 28.
    de Groot JF, Fuller G, Kumar AJ, Piao Y, Eterovic K, Ji Y, Conrad CA (2010) Tumor invasion after treatment of glioblastoma with bevacizumab: radiographic and pathologic correlation in humans and mice. Neuro Oncol 12:233–242PubMedGoogle Scholar
  29. 29.
    Swanson KR, Alvord EC Jr, Murray JD (2000) A quantitative model for differential motility of gliomas in grey and white matter. Cell Prolif 33:317–329PubMedCrossRefGoogle Scholar
  30. 30.
    Harpold HLP, Alvord EC Jr, Swanson KR (2007) The evolution of mathematical modeling of glioma proliferation and invasion. J Neuropathol Exp Neurol 66:1–9PubMedCrossRefGoogle Scholar
  31. 31.
    Lyng H, Haraldseth O, Rofstad EK (2000) Measurements of cell density and necrotic fraction in human melanoma xenografts by diffusion weighted magnetic resonance imaging. Magn Reson Med 43:828–836PubMedCrossRefGoogle Scholar
  32. 32.
    Sugahara T, Korogi Y, Kochi M, Ikushima I, Shigematu Y, Hirai T, Okudo T, Liang L, Ge Y, Komohara Y, Ushio Y, Takahashi M (1999) Usefulness of diffusion-weighted MRI with echo-planar technique in the evaluation of cellularity in gliomas. J Magn Reson Imaging 9:53–60PubMedCrossRefGoogle Scholar
  33. 33.
    Chenevert TL, Stegman LD, Taylor JM, Robertson PL, Greenberg HS, Rehemtulla A, Ross BD (2000) Diffusion magnetic resonance imaging: an early surrogate marker for therapeutic efficacy in brain tumors. J Natl Cancer Inst 92:2029–2036PubMedCrossRefGoogle Scholar
  34. 34.
    Hayashida Y, Hirai T, Morishita S, Kitajima M, Murakami R, Korogi Y, Makino K, Nakamura H, Ikushima I, Yamura M, Kochi M, Kuratsu JI, Yamashita Y (2006) Diffusion-weighted imaging of metastatic brain tumors: comparison with histologic type and tumor cellularity. AJNR Am J Neuroradiol 27:1419–1425PubMedGoogle Scholar
  35. 35.
    Gauvain KM, McKinstry RC, Mukherjee P, Perry A, Neil JJ, Kaufman BA, Hayashi RJ (2001) Evaluating pediatric brain tumor cellularity with diffusion-tensor imaging. AJR Am J Roentgenol 177:449–454PubMedGoogle Scholar
  36. 36.
    Kinoshita M, Hashimoto N, Goto T, Kagawa N, Kishima H, Izumoto S, Tanaka H, Fujita N, Yoshimine T (2008) Fractional anisotropy and tumor cell density of the tumor core show positive correlation in diffusion tensor magnetic resonance imaging of malignant tumors. Neuroimage 43:29–35PubMedCrossRefGoogle Scholar
  37. 37.
    Kono K, Inoue Y, Nakayama K, Shakudo M, Morino M, Ohata K, Wakasa K, Yamada R (2001) The role of diffusion-weighted imaging in patients with brain tumors. AJNR Am J Neuroradiol 22:1081–1088PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2011

Authors and Affiliations

  • Benjamin M. Ellingson
    • 1
  • Timothy F. Cloughesy
    • 2
  • Albert Lai
    • 2
  • Phioanh L. Nghiemphu
    • 2
  • Whitney B. Pope
    • 1
  1. 1.Department of Radiological Sciences, David Geffen School of MedicineUniversity of California Los AngelesLos AngelesUSA
  2. 2.Department of Neurology, David Geffen School of MedicineUniversity of California Los AngelesLos AngelesUSA

Personalised recommendations