Journal of Neuro-Oncology

, Volume 104, Issue 2, pp 401–410 | Cite as

Proteomic data in meningiomas: post-proteomic analysis can reveal novel pathophysiological pathways

  • A. Herrmann
  • J. Ooi
  • S. Launay
  • J. L. Searcy
  • R. F. Deighton
  • J. McCulloch
  • I. R. Whittle
Topic Review


Meningiomas account for approximately 20% of adult primary intracranial tumours. WHO I meningiomas are the most common and are generally benign, but can progress, recur or transform to WHO II or WHO III grades over many years. A systematic review of multiple independent shotgun proteomic analyses of meningioma was performed to provide insight into underlying disease pathways. Shotgun proteomics has been conducted in seven meningioma related studies but there is considerable variation in aims, methodology, statistical power and the use of control tissue between these studies. Fifteen proteins which are different between WHO I and WHO II meningiomas and nine proteins which are different between WHO II and WHO III meningiomas have been described but without a view of their biological significance. Network analysis of proteins different between WHO I and WHO II meningiomas provided a coherent hypothesis for the involvement of these proteins in meningioma. Western blot analyses of meningioma tissue provided a measure of support for a core component in the network (involving VDAC2, APOA1 and HNF4α) but highlighted intrinsic difficulty of proteomic and biochemical analysis of meningiomas (as a consequence of gross alterations in tissue composition). Systematic review of shotgun proteomics and network analysis provides insight into meningioma pathophysiology despite the many barriers and difficulties that are inherent to this type of study.


Meningioma Proteomics Pathophysiology Functional network 



This work was partly supported by grants from the Chief Scientists Office, the Melville Trust, and The Brain Tumour Research Fund.


  1. 1.
    Dhamoon A, Kohn E, Azad N (2007) The ongoing evolution of proteomics in malignancy. Drug Discov Today 12(17/18):700–708PubMedCrossRefGoogle Scholar
  2. 2.
    Micallef J, Gajadhar A, Wiley J, DeSouza L, Siu K, Guha A (2008) Proteomics: present and future implications in neuro-oncology. Neurosurgery 62(3):539–555PubMedCrossRefGoogle Scholar
  3. 3.
    Mawrin C, Perry A (2010) Pathological classification and molecular genetics of meningiomas. J Neurooncol 99(3):379–391PubMedCrossRefGoogle Scholar
  4. 4.
    Perry A, Louis D, Scheithauer B, Budka H, Von Deimling A (2007) Meningiomas. In: Louis DN, Ohgaki H, Wiestler OD, Cavenee WK (eds) WHO classification of tumours of the central nervous system. IARC press, Lyon, pp 164–172Google Scholar
  5. 5.
    Hanft S, Canoll P, Bruce J (2010) A review of malignant meningiomas: diagnosis, characteristics, and treatment. J Neurooncol 99(3):433–443PubMedCrossRefGoogle Scholar
  6. 6.
    Whittle I, Smith C, Navoo P, Collie D (2004) Meningiomas. Lancet 363:1535–1543PubMedCrossRefGoogle Scholar
  7. 7.
    Sughrue M, Kane A, Shangari G, Rutkowski M, McDermott M, Berger M, Parsa A (2010) The relevance of Simpson grade I and II resection in modern neurosurgical treatment of World Health Organization grade I meningiomas. J Neurosurg 113(5):1029–1035PubMedCrossRefGoogle Scholar
  8. 8.
    Whittle I, Short D, Deighton R, Kerr L, Smith C, Mcculloch J (2006) Proteomic analysis of gliomas. Br J Neurosurg 21(6):576–582CrossRefGoogle Scholar
  9. 9.
    Deighton R, McGregor R, Kemp J, McCulloch J, Whittle I (2010) Glioma pathophysiology: insights emerging from proteomics. Brain Pathol 1015–6305:1–13Google Scholar
  10. 10.
    Ingenuity systems citing guidelines. Last updated 2009. Available from
  11. 11.
    Deighton R, Kerr L, Short D, Allerhand M, Whittle I, McCulloch J (2010) Network generation enhances interpretation of proteomic data from induced apoptosis. Proteomics 10:1–9CrossRefGoogle Scholar
  12. 12.
    Deighton R, Short D, McGregor R, Gow A, Whittle I, McCulloch J (2009) The utility of functional interaction and cluster analysis in CNS proteomics. J Neurosci Methods 180(2):321–329PubMedCrossRefGoogle Scholar
  13. 13.
    Okamoto H, Li J, Vortmeyet A, Jaffe H, Lee Y, Glasker S, Sohn T, Zeng W, Ikejiri B, Proescholdt M, Mayer C, Weil R, Oldfield E, Zhuang Z (2006) Comparative proteomic profiles of meningioma subtypes. Cancer Res 66(20):10199–10204PubMedCrossRefGoogle Scholar
  14. 14.
    Agar N, Malcom J, Mohan V, Yang H, Johnson M, Tannenbaum A, Agar J, Black P (2010) Imaging of meningioma progression by MALDI-TOF MS. Anal Chem 82(7):2621–2625PubMedCrossRefGoogle Scholar
  15. 15.
    Bouamrani A, Ramus C, Gay E, Pelletier L, Cubizolles M, Brugiere S, Wion D, Berger F, Issartel J (2010) Increased phosphorylation of vimentin in noninfiltrative meningiomas. PLoS ONE 5(2):e9238PubMedCrossRefGoogle Scholar
  16. 16.
    Kim Y, Klotz M, Tholey A, Henn W, Schafer K, Feiden W (2009) Comparative proteome analyses of meningiomas of different grades in the identification of progression associated proteins. Acta Neuropathol 118:433–467 AbstractCrossRefGoogle Scholar
  17. 17.
    Saydam O, Senol O, Schaaij-Visser T, Pham T, Piersma S, Stemmer-Rachamimov A, Wurdinger T, Peerdeman S, Jimenez C (2010) Comparative protein profiling reveals minichromosome maintenance (MCM) proteins as novel potential tumor markers for meningiomas. J Proteome Res 9:485–494PubMedCrossRefGoogle Scholar
  18. 18.
    Scholz M (2006) Proteomics-based identification of differentially expressed proteins in human meningiomas. German medical science (Meeting Abstract)Google Scholar
  19. 19.
    Wibom C, Moren L, Aarhus M, Knappskof P, Lund-Johansen M, Antti H, Bergenheim A (2009) Proteomic profiles differ between bone invasive and noninvasive benign meningiomas of fibrous and meningothelial subtypes. J Neurooncol 94:321–331PubMedCrossRefGoogle Scholar
  20. 20.
    Vogel T, Zhuang Z, Li J, Okamoto H, Furata M, Lee Y, Zeng W, Oldfield E, Vortmeyer A, Weil R (2005) Proteins and protein pattern differences between glioma cell lines and glioblastoma multiforme. Clin Cancer Res 11(10):3624–3632PubMedCrossRefGoogle Scholar
  21. 21.
    Niclou S, Fack F, Rajcevic U (2010) Glioma proteomics: status and perspectives. J Proteomics 73(10):1823–1838PubMedCrossRefGoogle Scholar
  22. 22.
    Willis J, Smith C, Ironside J, Erridge S, Whittle I (2005) The accuracy of meningioma grading: a 10 year audit. Neuropathol Appl Neurobiol 31:141–149PubMedCrossRefGoogle Scholar
  23. 23.
    Pastorino J, Hoek J (2008) Regulation of hexokinase binding to VDAC. J Bioenerg Biomembr 40:171–182PubMedCrossRefGoogle Scholar
  24. 24.
    Taylor J, Borthwick F, Bartholomew C, Graham A (2010) Overexpression of stroidogenic acute regulatory protein increases macrophage cholesterol efflux to apolipoprotein AI. Cardiovasc Res 86:526–534PubMedCrossRefGoogle Scholar
  25. 25.
    Montero J, Morales A, Llacuna L, Lluis J et al (2008) Mitochondrial cholesterol contributes to chemotherapy resistance in hepatocellular carcinoma. Cancer Res 68:5246–5256PubMedCrossRefGoogle Scholar
  26. 26.
    Chong P, Lee H, Zhou J, Liu S et al (2010) Reduced plasma APOA1 level is associated with gastric tumour growth in MKN45 mouse xenograft model. J Proteomics 73:1632–1640PubMedCrossRefGoogle Scholar
  27. 27.
    Mogilenko D, Dizhe E, Shavva V, Lapikov I et al (2009) Role of the nuclear receptors HNF4α, PPARα, and LXRs in the TNFα-mediated inhibition of human apolipoprotein A-1 gene expression in HepG2 cells. Biochemistry 48:11950–11960PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2011

Authors and Affiliations

  • A. Herrmann
    • 1
  • J. Ooi
    • 2
  • S. Launay
    • 1
  • J. L. Searcy
    • 1
  • R. F. Deighton
    • 1
    • 2
  • J. McCulloch
    • 1
  • I. R. Whittle
    • 1
    • 2
  1. 1.Centre for Cognitive and Neural SystemsUniversity of EdinburghEdinburghUK
  2. 2.Department of Clinical Neurosciences, Western General Hospital and Centre for Cognitive and Neural SystemsUniversity of EdinburghEdinburghUK

Personalised recommendations