Journal of Neuro-Oncology

, Volume 104, Issue 1, pp 45–53 | Cite as

Isolation and characterization of tumor stem-like cells from human meningiomas

  • Dueng-Yuan Hueng
  • Huey-Kang Sytwu
  • Shih-Ming Huang
  • Chen Chang
  • Hsin-I Ma
Laboratory Investigation - Human/Animal Tissue


Recent advances in research have found that tumor stem-like cells are resistant to surgery, radiotherapy, and chemotherapy. Tumor stem-like cells play critical roles in tumor recurrence, angiogenesis, and invasion in malignant brain tumors. However, the identification of tumor stem-like cells in meningiomas has not been clarified. In this study, we identified the stem-like features of sphere-forming cells in human meningiomas. The results showed that meningioma stem-like cells possess the ability to form spheres in identical stem cell culture condition. These meningioma sphere cells (MgSCs) expressed progenitor cell marker, CD133, but not differentiated cell marker, epithelial membrane antigen (EMA) on immunofluorescence staining. Importantly, the mRNA expression of ABCG, and CD133 was higher in MgSCs than daughter meningioma adherent cells (MgACs). In addition, cells displayed chemotherapeutic resistance to vincristine more in MgSCs than MgACs. This phenomenon was also found in single cell form from dissociated spheres than MgACs. Moreover, MgSCs are more resistant to irradiation treatment than MgACs. Furthermore, MgSCs revealed high tumorigenicity in vivo following orthotopic inoculation into the brains of immunodeficient mice. The corresponding immunohistochemical (IHC) staining found that MgSCs are positive for EMA, vimentin, and CD133, consistent with IHC of primary human meningiomas. These findings have provided better understanding of meningioma cell biology and suggested that meningioma stem-like cells may serve as a novel target in therapeutic resistant meningiomas.


CD133 Chemoresistance Meningioma Radioresistance Sphere Tumor stem-like cell 



This study was supported by grants TSGH-C99-069, TSGH-C99-072, TSGH-C99-073, TSGH-C99-074, and TSGH-C99-149, from the Tri-Service General Hospital (D.-Y. Hueng), NSC-96-2628-B-016-002-MY3, NSC98-3112-B-016-002 and NSC99-3112-B-016-001 (H.-K. Sytwu), and a grant B971113 from the Teh-Tzer Study Group for Human Medical Research Foundation, and grants DOH99-TD-B-111-003, and DOH99-TD-C-111-008, from Taiwan Department of Health for the Center of Excellence for Clinical Trial and Research in Neuroscience, and the Center of Excellence for Cancer Research.


  1. 1.
    Marosi C, Hassler M, Roessler K, Reni M, Sant M, Mazza E, Vecht C (2008) Meningioma. Crit Rev Oncol Hematol 67:153–171PubMedCrossRefGoogle Scholar
  2. 2.
    Perez-Bacete MJ, Cerda-Nicolas M, Piquer J, Peydro-Olaya A (1989) Differential immunohistochemical characteristics of meningiomas and other neoplasms of the central nervous system. Arch Neurobiol (Madr) 52:265–272Google Scholar
  3. 3.
    Meis JM, Ordonez NG, Bruner JM (1986) Meningiomas. An immunohistochemical study of 50 cases. Arch Pathol Lab Med 110:934–937PubMedGoogle Scholar
  4. 4.
    Barresi V, Cerasoli S, Vitarelli E, Tuccari G (2007) Density of microvessels positive for CD105 (endoglin) is related to prognosis in meningiomas. Acta Neuropathol 114:147–156PubMedCrossRefGoogle Scholar
  5. 5.
    Aghi MK, Carter BS, Cosgrove GR, Ojemann RG, Amin-Hanjani S, Martuza RL, Curry WT Jr, Barker FG II (2009) Long-term recurrence rates of atypical meningiomas after gross total resection with or without postoperative adjuvant radiation. Neurosurgery 64:56–60 (discussion 60)PubMedCrossRefGoogle Scholar
  6. 6.
    Yoo-Jin K, Kim Y, Bochem N, Ketter R, Henn W, Feiden W (2008) Meningiomas: multiparametric approach for risk stratification and grading. Pathologe 29:428–433PubMedCrossRefGoogle Scholar
  7. 7.
    Tseng KY, Chung MH, Sytwu HK, Lee HM, Chen KY, Chang C, Lin CK, Yen CH, Chen JH, Lin GJ, Ma HI, Yeh YS, Ju DT, Liu MY, Hueng DY (2010) Osteopontin expression is a valuable marker for prediction of short-term recurrence in WHO grade I benign meningiomas. J Neurooncol 100:217–223. doi: 10.1007/s11060-010-0164-2 PubMedCrossRefGoogle Scholar
  8. 8.
    Kunishio K, Kobayashi K, Kagawa M, Makabe T, Matsumoto A, Matsumoto Y (2007) A case of malignant meningioma treated by individual adjuvant chemotherapy based on the mRNA expression of drug-resistance gene. Gan To Kagaku Ryoho 34:265–268PubMedGoogle Scholar
  9. 9.
    Demeule M, Shedid D, Beaulieu E, Del Maestro RF, Moghrabi A, Ghosn PB, Moumdjian R, Berthelet F, Beliveau R (2001) Expression of multidrug-resistance P-glycoprotein (MDR1) in human brain tumors. Int J Cancer 93:62–66. doi: 10.1002/ijc.1306[pii] PubMedCrossRefGoogle Scholar
  10. 10.
    Jordan CT, Guzman ML, Noble M (2006) Cancer stem cells. N Engl J Med 355:1253–1261PubMedCrossRefGoogle Scholar
  11. 11.
    Zhou S, Schuetz JD, Bunting KD, Colapietro AM, Sampath J, Morris JJ, Lagutina I, Grosveld GC, Osawa M, Nakauchi H, Sorrentino BP (2001) The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nat Med 7:1028–1034PubMedCrossRefGoogle Scholar
  12. 12.
    Zabierowski SE, Herlyn M (2008) Learning the ABCs of melanoma-initiating cells. Cancer Cell 13:185–187PubMedCrossRefGoogle Scholar
  13. 13.
    Zhang S, Balch C, Chan MW, Lai HC, Matei D, Schilder JM, Yan PS, Huang TH, Nephew KP (2008) Identification and characterization of ovarian cancer-initiating cells from primary human tumors. Cancer Res 68:4311–4320PubMedCrossRefGoogle Scholar
  14. 14.
    Capper D, Gaiser T, Hartmann C, Habel A, Mueller W, Herold-Mende C, von Deimling A, Siegelin MD (2009) Stem-cell-like glioma cells are resistant to TRAIL/Apo2L and exhibit down-regulation of caspase-8 by promoter methylation. Acta Neuropathol 117:445–456PubMedCrossRefGoogle Scholar
  15. 15.
    Ma HI, Kao CL, Lee YY, Chiou GY, Tai LK, Lu KH, Huang CS, Chen YW, Chiou SH, Cheng IC, Wong TT (2009) Differential expression profiling between atypical teratoid/rhabdoid and medulloblastoma tumor in vitro and in vivo using microarray analysis. Childs Nerv Syst 26:293–303PubMedCrossRefGoogle Scholar
  16. 16.
    Kao CL, Huang PI, Tsai PH, Tsai ML, Lo JF, Lee YY, Chen YJ, Chen YW, Chiou SH (2009) Resveratrol-induced apoptosis and increased radiosensitivity in CD133-positive cells derived from atypical teratoid/rhabdoid tumor. Int J Radiat Oncol Biol Phys 74:219–228PubMedCrossRefGoogle Scholar
  17. 17.
    Hide T, Takezaki T, Nakamura H, Kuratsu J, Kondo T (2008) Brain tumor stem cells as research and treatment targets. Brain Tumor Pathol 25:67–72. doi: 10.1007/s10014-008-0237-5 PubMedCrossRefGoogle Scholar
  18. 18.
    Altaner C (2008) Glioblastoma and stem cells. Neoplasma 55:369–374PubMedGoogle Scholar
  19. 19.
    Chiou SH, Kao CL, Chen YW, Chien CS, Hung SC, Lo JF, Chen YJ, Ku HH, Hsu MT, Wong TT (2008) Identification of CD133-positive radioresistant cells in atypical teratoid/rhabdoid tumor. PLoS One 3:e2090PubMedCrossRefGoogle Scholar
  20. 20.
    Ma HI, Chiou SH, Hueng DY, Tai KL, Huang PI, Kao CL, Chen YW, Sytwu HK (2010) Celecoxib and radioresistant glioblastoma-derived CD133+ cells: improvement in radiotherapeutic effects. J Neurosurg. doi: 10.3171/2009.11.JNS091396
  21. 21.
    Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, Cusimano MD, Dirks PB (2004) Identification of human brain tumour initiating cells. Nature 432:396–401PubMedCrossRefGoogle Scholar
  22. 22.
    Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, Dirks PB (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res 63:5821–5828PubMedGoogle Scholar
  23. 23.
    Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ (2005) Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res 65:10946–10951PubMedCrossRefGoogle Scholar
  24. 24.
    Richardson GD, Robson CN, Lang SH, Neal DE, Maitland NJ, Collins AT (2004) CD133, a novel marker for human prostatic epithelial stem cells. J Cell Sci 117:3539–3545PubMedCrossRefGoogle Scholar
  25. 25.
    Rizzo S, Attard G, Hudson DL (2005) Prostate epithelial stem cells. Cell Prolif 38:363–374PubMedCrossRefGoogle Scholar
  26. 26.
    O’Brien CA, Pollett A, Gallinger S, Dick JE (2007) A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 445:106–110PubMedCrossRefGoogle Scholar
  27. 27.
    Ghosh N, Matsui W (2009) Cancer stem cells in multiple myeloma. Cancer Lett 277:1–7PubMedCrossRefGoogle Scholar
  28. 28.
    Schatton T, Murphy GF, Frank NY, Yamaura K, Waaga-Gasser AM, Gasser M, Zhan Q, Jordan S, Duncan LM, Weishaupt C, Fuhlbrigge RC, Kupper TS, Sayegh MH, Frank MH (2008) Identification of cells initiating human melanomas. Nature 451:345–349PubMedCrossRefGoogle Scholar
  29. 29.
    Bertolini G, Roz L, Perego P, Tortoreto M, Fontanella E, Gatti L, Pratesi G, Fabbri A, Andriani F, Tinelli S, Roz E, Caserini R, Lo Vullo S, Camerini T, Mariani L, Delia D, Calabro E, Pastorino U, Sozzi G (2009) Highly tumorigenic lung cancer CD133+ cells display stem-like features and are spared by cisplatin treatment. Proc Natl Acad Sci USA 106:16281–16286PubMedCrossRefGoogle Scholar
  30. 30.
    Chang CJ, Hsu CC, Yung MC, Chen KY, Tzao C, Wu WF, Chou HY, Lee YY, Lu KH, Chiou SH, Ma HI (2009) Enhanced radiosensitivity and radiation-induced apoptosis in glioma CD133-positive cells by knockdown of SirT1 expression. Biochem Biophys Res Commun 380:236–242PubMedCrossRefGoogle Scholar
  31. 31.
    Blazek ER, Foutch JL, Maki G (2007) Daoy medulloblastoma cells that express CD133 are radioresistant relative to CD133− cells, and the CD133+ sector is enlarged by hypoxia. Int J Radiat Oncol Biol Phys 67:1–5PubMedCrossRefGoogle Scholar
  32. 32.
    Lasky JL III, Choe M, Nakano I (2009) Cancer stem cells in pediatric brain tumors. Curr Stem Cell Res Ther 4:298–305PubMedCrossRefGoogle Scholar
  33. 33.
    Tunici P, Yu JS (2009) Pituitary adenoma stem cells. Methods Mol Biol 568:195–201PubMedCrossRefGoogle Scholar
  34. 34.
    Xu Q, Yuan X, Tunici P, Liu G, Fan X, Xu M, Hu J, Hwang JY, Farkas DL, Black KL, Yu JS (2009) Isolation of tumour stem-like cells from benign tumours. Br J Cancer 101:303–311PubMedCrossRefGoogle Scholar
  35. 35.
    Lee CC, Jan HJ, Lai JH, Ma HI, Hueng DY, Lee YC, Cheng YY, Liu LW, Wei HW, Lee HM (2010) Nodal promotes growth and invasion in human gliomas. Oncogene 29:3110–3123PubMedCrossRefGoogle Scholar
  36. 36.
    Jan HJ, Lee CC, Shih YL, Hueng DY, Ma HI, Lai JH, Wei HW, Lee HM (2010) Osteopontin regulates human glioma cell invasiveness and tumor growth in mice. Neuro Oncol 12:58–70PubMedGoogle Scholar
  37. 37.
    Lin GJ, Huang SH, Chen YW, Hueng DY, Chien MW, Chia WT, Chang DM, Sytwu HK (2009) Melatonin prolongs islet graft survival in diabetic NOD mice. J Pineal Res 47:284–292PubMedCrossRefGoogle Scholar
  38. 38.
    Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB, Dewhirst MW, Bigner DD, Rich JN (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444:756–760PubMedCrossRefGoogle Scholar
  39. 39.
    Hu W, Shen F, Chen G, Shen G, Liu W, Zhou J (2009) Possible involvement of brain tumour stem cells in the emergence of a fast-growing malignant meningioma after surgical resection and radiotherapy of high-grade astrocytoma: case report and preliminary laboratory investigation. J Int Med Res 37:240–246PubMedGoogle Scholar
  40. 40.
    Wang J, Wakeman TP, Lathia JD, Hjelmeland AB, Wang XF, White RR, Rich JN, Sullenger BA (2010) Notch promotes radioresistance of glioma stem cells. Stem Cells 28:17–28PubMedCrossRefGoogle Scholar
  41. 41.
    Mawrin C, Perry A (2010) Pathological classification and molecular genetics of meningiomas. J Neurooncol 99:379–391. doi: 10.1007/s11060-010-0342-2 PubMedCrossRefGoogle Scholar
  42. 42.
    Laurendeau I, Ferrer M, Garrido D, D’Haene N, Ciavarelli P, Basso A, Vidaud M, Bieche I, Salmon I, Szijan I (2010) Gene expression profiling of the hedgehog signaling pathway in human meningiomas. Mol Med 16:262–270PubMedCrossRefGoogle Scholar
  43. 43.
    Bellahcene A, Castronovo V, Ogbureke KU, Fisher LW, Fedarko NS (2008) Small integrin-binding ligand N-linked glycoproteins (SIBLINGs): multifunctional proteins in cancer. Nat Rev Cancer 8:212–226PubMedCrossRefGoogle Scholar
  44. 44.
    Ragel BT, Jensen RL (2010) Aberrant signaling pathways in meningiomas. J Neurooncol 99:315–324. doi: 10.1007/s11060-010-0381-8 PubMedCrossRefGoogle Scholar
  45. 45.
    Zeppernick F, Ahmadi R, Campos B, Dictus C, Helmke BM, Becker N, Lichter P, Unterberg A, Radlwimmer B, Herold-Mende CC (2008) Stem cell marker CD133 affects clinical outcome in glioma patients. Clin Cancer Res 14:123–129PubMedCrossRefGoogle Scholar
  46. 46.
    Fatoo A, Nanaszko MJ, Allen BB, Mok CL, Bukanova EN, Beyene R, Moliterno JA, Boockvar JA (2010) Understanding the role of tumor stem cells in glioblastoma multiforme: a review article. J Neurooncol. doi: 10.1007/s11060-010-0406-3

Copyright information

© Springer Science+Business Media, LLC. 2010

Authors and Affiliations

  • Dueng-Yuan Hueng
    • 1
    • 2
  • Huey-Kang Sytwu
    • 2
    • 3
  • Shih-Ming Huang
    • 4
  • Chen Chang
    • 5
  • Hsin-I Ma
    • 1
    • 2
  1. 1.Department of Neurological Surgery, Tri-Service General Hospital, Graduate Institute of Medical SciencesNational Defense Medical CenterTaipeiTaiwan, ROC
  2. 2.Graduate Institute of Medical SciencesNational Defense Medical CenterTaipeiTaiwan, ROC
  3. 3.Graduate Institute of Life SciencesNational Defense Medical CenterTaipeiTaiwan, ROC
  4. 4.Department of BiochemistryNational Defense Medical CenterTaipeiTaiwan, ROC
  5. 5.Institute of Biomedical ScienceAcademia SinicaTaipeiTaiwan, ROC

Personalised recommendations