Advertisement

Journal of Neuro-Oncology

, Volume 104, Issue 1, pp 33–43 | Cite as

A role for MT1-MMP as a cell death sensor/effector through the regulation of endoplasmic reticulum stress in U87 glioblastoma cells

  • Sébastien Proulx-Bonneau
  • Jonathan Pratt
  • Borhane AnnabiEmail author
Laboratory Investigation - Human/Animal Tissue

Abstract

Recent findings in cell death signalling show that membrane type 1 matrix metalloproteinase (MT1-MMP), an MMP known for its involvement in cancer cell invasion and metastasis, can act as a “bioswitch” in the invasion versus cell death decision in brain tumour cells. Given that the endoplasmic reticulum (ER) is a subcellular compartment involved in metabolic control and cell death signalling and that cytoskeleton disruption, as encountered during cancer cell invasion, can lead to ER stress, we questioned whether MT1-MMP contributes to ER stress. We found that MT1-MMP gene silencing or pharmacological inhibition of vesicular trafficking with Brefeldin-A abrogated MT1-MMP cell surface-mediated proMMP-2 activation by the lectin Concanavalin-A (ConA) in U87 glioblastoma cells. ConA, also known to trigger the expression of pro-inflammatory cyclooxygenase (COX)-2 through MT1-MMP signalling from the plasma membrane, failed to do so when MT1-MMP was prevented from reaching the cell surface by Brefeldin-A. Gene silencing of MT1-MMP antagonized the expression of ConA-induced COX-2 and of the ER stress marker glucose-related protein 78 (GRP78), further suggesting that plasma membrane localization of MT1-MMP contributes to signalling ER stress. MT1-MMP maturation, which partially occurs during its trafficking from the ER to the plasma membrane, showed correlation of the 60 kDa MT1-MMP with GRP78 expression. Finally, Brefeldin-A treatment of glioblastoma cells led to Akt dephosphorylation; this effect was reversed when MT1-MMP was silenced. Collectively, our results provide a molecular rationale for a new role for MT1-MMP in the regulation of cancer cell death processes through ER stress signalling.

Keywords

Endoplasmic reticulum stress MT1-MMP Concanavalin-A 

Abbreviations

ConA

Concanavalin-A

ECM

Extracellular matrix

ER

Endoplasmic reticulum

GRP78

Glucose-related protein 78

MT1-MMP

Membrane type 1 matrix metalloproteinase

Notes

Acknowlegments

BA holds a Canada Research Chair in Molecular Oncology from the Canadian Institutes of Health Research (CIHR). SPB is a Fonds Québécois de la Recherche sur la Nature et les Technologies (FQRNT) awardee. JP is a Natural Sciences and Engineering Research Council of Canada (NSERC) awardee. This study was funded by a grant from the NSERC to BA.

References

  1. 1.
    Marciniak SJ, Ron D (2006) Endoplasmic reticulum stress signalling in disease. Physiol Rev 86:1133–1149PubMedCrossRefGoogle Scholar
  2. 2.
    Koumenis C (2006) ER stress, hypoxia tolerance and tumour progression. Curr Mol Med 6:55–69PubMedCrossRefGoogle Scholar
  3. 3.
    Linder S, Shoshan MC (2005) Lysosomes and endoplasmic reticulum: targets for improved, selective anticancer therapy. Drug Resist Updat 8:199–204PubMedCrossRefGoogle Scholar
  4. 4.
    Belkaid A, Currie JC, Desgagnes J, Annabi B (2006) The chemopreventive properties of chlorogenic acid reveal a potential new role for the microsomal glucose-6-phosphate translocase in brain tumour progression. Cancer Cell Int 6:7–12PubMedCrossRefGoogle Scholar
  5. 5.
    Chintala SK, Tonn JC, Rao JS (1999) Matrix metalloproteinases and their biological function in human gliomas. Int J Dev Neurosci 17:495–502PubMedCrossRefGoogle Scholar
  6. 6.
    Csala M, Banhegyi G, Benedetti A (2006) Endoplasmic reticulum: a metabolic compartment. FEBS Lett 580:2160–2165PubMedCrossRefGoogle Scholar
  7. 7.
    Szegezdi E, Logue SE, Gorman AM, Samali A (2006) Mediators of endoplasmic reticulum stress-induced apoptosis. EMBO Rep 7:880–885PubMedCrossRefGoogle Scholar
  8. 8.
    Strasser A, Puthalakath H (2008) Fold up or perish: unfolded protein response and chemotherapy. Cell Death Differ 15:223–225PubMedCrossRefGoogle Scholar
  9. 9.
    Vedrenne C, Hauri HP (2006) Morphogenesis of the endoplasmic reticulum: beyond active membrane expansion. Traffic 7:639–646PubMedCrossRefGoogle Scholar
  10. 10.
    Remacle AG, Rozanov DV, Baciu PC, Chekanov AV, Golubkov VS, Strongin AY (2005) The transmembrane domain is essential for the microtubular trafficking of membrane type-1 matrix metalloproteinase (MT1-MMP). J Cell Sci 118:4975–4984PubMedCrossRefGoogle Scholar
  11. 11.
    Sato H, Takino T, Miyamori H (2005) Roles of membrane-type matrix metalloproteinase-1 in tumour invasion and metastasis. Cancer Sci 96:212–217PubMedCrossRefGoogle Scholar
  12. 12.
    Gingras D, Bousquet-Gagnon N, Langlois S, Lachambre MP, Annabi B, Béliveau R (2001) Activation of the extracellular signal-regulated protein kinase (ERK) cascade by membrane-type-1 matrix metalloproteinase (MT1-MMP). FEBS Lett 507:231–236PubMedCrossRefGoogle Scholar
  13. 13.
    Annabi B, Thibeault S, Moumdjian R, Béliveau R (2004) Hyaluronan cell surface binding is induced by type I collagen and regulated by caveolae in glioma cells. J Biol Chem 279:21888–21896PubMedCrossRefGoogle Scholar
  14. 14.
    Belkaid A, Fortier S, Cao J, Annabi B (2007) Necrosis induction in glioblastoma cells reveals a new “bioswitch” function for the MT1-MMP/G6PT signalling axis in proMMP-2 activation versus cell death decision. Neoplasia 9:332–430PubMedCrossRefGoogle Scholar
  15. 15.
    Alfranca A, López-Oliva JM, Genís L, López-Maderuelo D, Mirones I, Salvado D, Quesada AJ, Arroyo AG, Redondo JM (2008) PGE2 induces angiogenesis via MT1-MMP-mediated activation of the TGFbeta/Alk5 signalling pathway. Blood 112:1120–1128PubMedCrossRefGoogle Scholar
  16. 16.
    Fortier S, Labelle D, Sina A, Moreau R, Annabi B (2008) Silencing of the MT1-MMP/G6PT axis suppresses calcium mobilization by sphingosine-1-phosphate in glioblastoma cells. FEBS Lett 582:799–804PubMedCrossRefGoogle Scholar
  17. 17.
    Annabi B, Laflamme C, Sina A, Lachambre MP, Béliveau R (2009) A MT1-MMP/NF-kappaB signalling axis as a checkpoint controller of COX-2 expression in CD133 + U87 glioblastoma cells. J Neuroinflammation 6:8PubMedCrossRefGoogle Scholar
  18. 18.
    Sina A, Proulx-Bonneau S, Roy A, Poliquin L, Cao J, Annabi B (2010) The lectin concanavalin-A signals MT1-MMP catalytic independent induction of COX-2 through an IKKgamma/NF-kappaB-dependent pathway. J Cell Commun Signal 4:31–38PubMedCrossRefGoogle Scholar
  19. 19.
    Wick W, Wick A, Schulz JB, Dichgans J, Rodemann HP, Weller M (2002) Prevention of irradiation-induced glioma cell invasion by temozolomide involves caspase 3 activity and cleavage of focal adhesion kinase. Cancer Res 62:1915–1919PubMedGoogle Scholar
  20. 20.
    Wild-Bode C, Weller M, Rimner A, Dichgans J, Wick W (2001) Sublethal irradiation promotes migration and invasiveness of glioma cells: implications for radiotherapy of human glioblastoma. Cancer Res 61:2744–2750PubMedGoogle Scholar
  21. 21.
    Annabi B, Lee YT, Martel C, Pilorget A, Bahary JP, Béliveau R (2003) Radiation induced-tubulogenesis in endothelial cells is antagonized by the antiangiogenic properties of green tea polyphenol (−) epigallocatechin-3-gallate. Cancer Biol Ther 2:642–649PubMedGoogle Scholar
  22. 22.
    Fortier S, Touaibia M, Lord-Dufour S, Galipeau J, Roy R, Annabi B (2008) Tetra- and hexavalent mannosides inhibit the pro-apoptotic, antiproliferative and cell surface clustering effects of concanavalin-A: impact on MT1-MMP functions in marrow-derived mesenchymal stromal cells. Glycobiology 18:195–204PubMedCrossRefGoogle Scholar
  23. 23.
    Lin SS, Levitan IB (1991) Concanavalin A: a tool to investigate neuronal plasticity. Trends Neurosci 14:273–277PubMedCrossRefGoogle Scholar
  24. 24.
    Yu M, Bowden ET, Sitlani J, Sato H, Seiki M, Mueller SC, Thompson EW (1997) Tyrosine phosphorylation mediates ConA-induced membrane type 1-matrix metalloproteinase expression and matrix metalloproteinase-2 activation in MDA-MB-231 human breast carcinoma cells. Cancer Res 57:5028–5032PubMedGoogle Scholar
  25. 25.
    Zucker S, Hymowitz M, Conner CE, DiYanni EA, Cao J (2002) Rapid trafficking of membrane type 1-matrix metalloproteinase to the cell surface regulates progelatinase a activation. Lab Invest 82:1673–1684PubMedGoogle Scholar
  26. 26.
    Lafleur MA, Mercuri FA, Ruangpanit N, Seiki M, Sato H, Thompson EW (2006) Type I collagen abrogates the clathrin-mediated internalization of membrane type 1 matrix metalloproteinase (MT1-MMP) via the MT1-MMP hemopexin domain. J Biol Chem 281:6826–6840PubMedCrossRefGoogle Scholar
  27. 27.
    Currie JC, Fortier S, Sina A, Galipeau J, Cao J, Annabi B (2007) MT1-MMP down-regulates the glucose 6-phosphate transporter expression in marrow stromal cells: a molecular link between pro-MMP-2 activation, chemotaxis, and cell survival. J Biol Chem 282:8142–8149PubMedCrossRefGoogle Scholar
  28. 28.
    Sina A, Lord-Dufour S, Annabi B (2009) Cell-based evidence for aminopeptidase N/CD13 inhibitor actinonin targeting of MT1-MMP-mediated proMMP-2 activation. Cancer Lett 279:171–176PubMedCrossRefGoogle Scholar
  29. 29.
    Atkinson SJ, Roghi C, Murphy G (2006) MT1-MMP hemopexin domain exchange with MT4-MMP blocks enzyme maturation and trafficking to the plasma membrane in MCF7 cells. Biochem J 398:15–22PubMedCrossRefGoogle Scholar
  30. 30.
    Wu YI, Munshi HG, Snipas SJ, Salvesen GS, Fridman R, Stack MS (2007) Activation-coupled membrane-type 1 matrix metalloproteinase membrane trafficking. Biochem J 407:171–177PubMedCrossRefGoogle Scholar
  31. 31.
    Meriane M, Duhamel S, Lejeune L, Galipeau J, Annabi B (2006) Cooperation of matrix metalloproteinases with the RhoA/Rho kinase and mitogen-activated protein kinase kinase-1/extracellular signal-regulated kinase signalling pathways is required for the sphingosine-1-phosphate-induced mobilization of marrow-derived stromal cells. Stem Cells 24:2557–2565PubMedCrossRefGoogle Scholar
  32. 32.
    Stewart LA (2002) Chemotherapy in adult high-grade glioma: a systematic review and meta-analysis of individual patient data from 12 randomised trials. Lancet 359:1011–1018PubMedCrossRefGoogle Scholar
  33. 33.
    Berens ME, Giese A (1999) “.those left behind”. Biology and oncology of invasive glioma cells. Neoplasia 1:208–219PubMedCrossRefGoogle Scholar
  34. 34.
    Lefranc F, Brotchi J, Kiss R (2005) Possible future issues in the treatment of glioblastomas: special emphasis on cell migration and the resistance of migrating glioblastoma cells to apoptosis. J Clin Oncol 23:2411–2422PubMedCrossRefGoogle Scholar
  35. 35.
    Markovic DS, Vinnakota K, Chirasani S, Synowitz M, Raguet H, Stock K, Sliwa M, Lehmann S, Kälin R, van Rooijen N, Holmbeck K, Heppner FL, Kiwit J, Matyash V, Lehnardt S, Kaminska B, Glass R, Kettenmann H (2009) Gliomas induce and exploit microglial MT1-MMP expression for tumour expansion. Proc Natl Acad Sci USA 106:12530–12535PubMedCrossRefGoogle Scholar
  36. 36.
    Golubkov VS, Cieplak P, Chekanov AV, Ratnikov BI, Aleshin AE, Golubkova NV, Postnova TI, Radichev IA, Rozanov DV, Zhu W, Motamedchaboki K, Strongin AY (2010) Internal cleavages of the autoinhibitory prodomain are required for membrane type-1 matrix metalloproteinase activation while furin cleavage alone generates inactive proteinase. J Biol Chem 285:27726–27736PubMedCrossRefGoogle Scholar
  37. 37.
    Ziemer LS, Koch CJ, Maity A, Magarelli DP, Horan AM, Evans SM (2001) Hypoxia and VEGF mRNA expression in human tumours. Neoplasia 3:500–508PubMedCrossRefGoogle Scholar
  38. 38.
    Broker LE, Kruyt FA, Giaccone G (2005) Cell death independent of caspases: a review. Clin Cancer Res 11:3155–3162PubMedCrossRefGoogle Scholar
  39. 39.
    Hinoue A, Takigawa T, Miura T, Nishimura Y, Suzuki S, Shiota K (2005) Disruption of actin cytoskeleton and anchorage-dependent cell spreading induces apoptotic death of mouse neural crest cells cultured in vitro. Anat Rec A Discov Mol Cell Evol Biol 282:130–137PubMedGoogle Scholar
  40. 40.
    Preaux AM, D’ortho MP, Bralet MP, Laperche Y, Mavier P (2002) Apoptosis of human hepatic myofibroblasts promotes activation of matrix metalloproteinase-2. Hepatology 36:615–622PubMedCrossRefGoogle Scholar
  41. 41.
    Langlois S, Di Tomasso G, Boivin D, Roghi C, Murphy G, Gingras D, Beliveau R (2005) Membrane type 1-matrix metalloproteinase induces endothelial cell morphogenic differentiation by a caspase-dependent mechanism. Exp Cell Res 307:452–464PubMedCrossRefGoogle Scholar
  42. 42.
    Deininger MH, Weller M, Streffer J, Mittelbronn M, Meyermann R (1999) Patterns of cyclooxygenase-1 and -2 expression in human gliomas in vivo. Acta Neuropathol 98:240–244PubMedCrossRefGoogle Scholar
  43. 43.
    Wilson DE, Anderson KM, Seed TM (1990) Ultrastructural evidence for differentiation in a human glioblastoma cell line treated with inhibitors of eicosanoid metabolism. Neurosurgery 27:523–531PubMedCrossRefGoogle Scholar
  44. 44.
    New P (2004) Cyclooxygenase in the treatment of glioma: its complex role in signal transduction. Cancer Control 11:152–164PubMedGoogle Scholar
  45. 45.
    Sminia P, Stoter TR, van der Valk P, Elkhuizen PH, Tadema TM, Kuipers GK, Vandertop WP, Lafleur MV, Slotman BJ (2005) Expression of cyclooxygenase-2 and epidermal growth factor receptor in primary and recurrent glioblastoma multiforme. J Cancer Res Clin Oncol 131:653–661PubMedCrossRefGoogle Scholar
  46. 46.
    Kuipers GK, Slotman BJ, Wedekind LE, Stoter TR, Berg J, Sminia P, Lafleur MV (2007) Radiosensitization of human glioma cells by cyclooxygenase-2 (COX-2) inhibition: independent on COX-2 expression and dependent on the COX-2 inhibitor and sequence of administration. Int J Radiat Biol 83:677–685PubMedCrossRefGoogle Scholar
  47. 47.
    Pyrko P, Schönthal AH, Hofman FM, Chen TC, Lee AS (2007) The unfolded protein response regulator GRP78/BiP is believed to be an efficient novel target for increasing chemosensitivity in malignant gliomas. Cancer Res 67:9809–9816PubMedCrossRefGoogle Scholar
  48. 48.
    Kardosh A, Golden EB, Pyrko P, Uddin J, Hofman FM, Chen TC, Louie SG, Petasis NA, Schönthal AH (2008) Aggravated endoplasmic reticulum stress as a basis for enhanced glioblastoma cell killing by bortezomib in combination with celecoxib or its non-coxib analogue, 2,5-dimethyl-celecoxib. Cancer Res 68:843–851PubMedCrossRefGoogle Scholar
  49. 49.
    Nyalendo C, Michaud M, Beaulieu E, Roghi C, Murphy G, Gingras D, Béliveau R (2007) Src-dependent phosphorylation of membrane type I matrix metalloproteinase on cytoplasmic tyrosine 573: role in endothelial and tumour cell migration. J Biol Chem 282:15690–15699PubMedCrossRefGoogle Scholar
  50. 50.
    Gingras D, Michaud M, Di Tomasso G, Béliveau E, Nyalendo C, Béliveau R (2008) Sphingosine-1-phosphate induces the association of membrane-type 1 matrix metalloproteinase with p130Cas in endothelial cells. FEBS Lett 582:399–404PubMedCrossRefGoogle Scholar
  51. 51.
    Annabi B, Bouzeghrane M, Moumdjian R, Moghrabi A, Béliveau R (2005) Probing the infiltrating character of brain tumours: inhibition of RhoA/ROK-mediated CD44 cell surface shedding from glioma cells by the green tea catechin EGCg. J Neurochem 94:906–916PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2010

Authors and Affiliations

  • Sébastien Proulx-Bonneau
    • 1
  • Jonathan Pratt
    • 1
  • Borhane Annabi
    • 1
    Email author
  1. 1.Laboratoire d’Oncologie Moléculaire, Département de Chimie, Centre de Recherche BioMEDUniversité du Québec à MontréalMontrealCanada

Personalised recommendations