Journal of Neuro-Oncology

, Volume 103, Issue 2, pp 267–276 | Cite as

Downregulation of uPARAP mediates cytoskeletal rearrangements and decreases invasion and migration properties in glioma cells

  • Satoshi Takahashi
  • Hisafumi Yamada-Okabe
  • Kenji Hamada
  • Shigeki Ohta
  • Takeshi Kawase
  • Kazunari Yoshida
  • Masahiro TodaEmail author
Laboratory Investigation - Human/Animal Tissue


To identify molecular therapeutic targets for glioma, we performed gene expression profiling by using a complementary DNA (cDNA) microarray method and identified the urokinase plasminogen activator receptor-associated protein (uPARAP/Endo180) as a gene expressed highly in glioma tissue compared with the normal brain tissue. The uPARAP is an endocytic receptor for collagen. In certain cell types, uPARAP occurs in a complex with the urokinase plasminogen activator receptor (uPAR) where it fulfills other functions in addition to collagenolysis. Quantitative PCR analysis using a cDNA panel revealed higher expression levels of uPARAP in glioma tissue compared with normal brain tissue. Western blot analysis revealed that the uPARAP protein was expressed in glioma samples and two glioma cell lines, KNS42 and KNS81, but not expressed in control tissue from the normal brain. Introduction of small interfering RNA-targeted uPARAP into the two different glioma cell lines, KNS42 and KNS81, resulted in downregulation of uPARAP expression, and it significantly suppressed glioma cell migration and invasion in vitro. Control glioma cells showed small cell bodies, whereas uPARAP siRNA-treated glioma cells exhibited large and flat morphology. Most of the polymeric actin in the control glioma cells was concentrated in the lamellipodia that are observed in mobile cells. In contrast, in the uPARAP siRNA-treated glioma cells, polymeric actin became organized in stress fibers and the lamellipodia disappeared, characteristic of immobile cells. Our present study suggests that uPARAP may be involved in glioma cell invasiveness through actin cytoskeletal rearrangement. downregulation of uPARAP may be a novel anti-invasion therapeutic strategy for malignant gliomas.


Glioma invasion Migration uPARAP Endo 180 Actin cytoskeleton 



We thank Ms. S. Teramoto, Ms. T. Muraki and Ms. Y. Aikawa for technical assistance, and Dr. R. Fukaya for useful discussion. Grants from the Ministry of Education, Science, Sports, and Science and Technology, JAPAN including Grant-in-Aid for Young Scientists (B) (JSPS KAKENHI 19791011).


  1. 1.
    Prados MD, Levin V (2000) Biology and treatment of malignant glioma. Semin Oncol 27:1–10PubMedGoogle Scholar
  2. 2.
    Takahashi S, Hirose Y, Ikeda E, Fukaya R, Kawase T (2007) Chromosome arm 1q gain associated with good response to chemotherapy in a malignant glioma. Case report. J Neurosurg 106:488–494. doi: 10.3171/jns.2007.106.3.488 PubMedCrossRefGoogle Scholar
  3. 3.
    DeRisi J, Penland L, Brown PO, Bittner ML, Meltzer PS, Ray M, Chen Y, Su YA, Trent JM (1996) Use of a cDNA microarray to analyse gene expression patterns in human cancer. Nat Genet 14:457–460. doi: 10.1038/ng1296-457 PubMedCrossRefGoogle Scholar
  4. 4.
    Gill RW, Sanseau P (2000) Rapid in silico cloning of genes using expressed sequence tags (ESTs). Biotechnol Annu Rev 5:25–44PubMedCrossRefGoogle Scholar
  5. 5.
    Lindlof A (2003) Gene identification through large-scale EST sequence processing. Appl Bioinformatics 2:123–129PubMedGoogle Scholar
  6. 6.
    Engelholm LH, Nielsen BS, Dano K, Behrendt N (2001) The urokinase receptor associated protein (uPARAP/endo180): a novel internalization receptor connected to the plasminogen activation system. Trends Cardiovasc Med 11:7–13PubMedCrossRefGoogle Scholar
  7. 7.
    Sheikh H, Yarwood H, Ashworth A, Isacke CM (2000) Endo180, an endocytic recycling glycoprotein related to the macrophage mannose receptor is expressed on fibroblasts, endothelial cells and macrophages and functions as a lectin receptor. J Cell Sci 113(Pt 6):1021–1032PubMedGoogle Scholar
  8. 8.
    Behrendt N, Jensen ON, Engelholm LH, Mortz E, Mann M, Dano K (2000) A urokinase receptor-associated protein with specific collagen binding properties. J Biol Chem 275:1993–2002PubMedCrossRefGoogle Scholar
  9. 9.
    Schnack Nielsen B, Rank F, Engelholm LH, Holm A, Dano K, Behrendt N (2002) Urokinase receptor-associated protein (uPARAP) is expressed in connection with malignant as well as benign lesions of the human breast and occurs in specific populations of stromal cells. Int J Cancer 98:656–664. doi: 10.1002/ijc.10227 PubMedCrossRefGoogle Scholar
  10. 10.
    Sulek J, Wagenaar-Miller RA, Shireman J, Molinolo A, Madsen DH, Engelholm LH, Behrendt N, Bugge TH (2007) Increased expression of the collagen internalization receptor uPARAP/Endo180 in the stroma of head and neck cancer. J Histochem Cytochem 55:347–353. doi: 10.1369/jhc.6A7133.2006 PubMedCrossRefGoogle Scholar
  11. 11.
    Kogianni G, Walker MM, Waxman J, Sturge J (2009) Endo180 expression with cofunctional partners MT1-MMP and uPAR-uPA is correlated with prostate cancer progression. Eur J Cancer 45:685–693. doi: 10.1016/j.ejca.2008.11.023 PubMedCrossRefGoogle Scholar
  12. 12.
    Huijbers IJ, Iravani M, Popov S, Robertson D, Al-Sarraj S, Jones C, Isacke CM (2010) A role for fibrillar collagen deposition and the collagen internalization receptor endo180 in glioma invasion. PLoS One 5:e9808. doi: 10.1371/journal.pone.0009808 PubMedCrossRefGoogle Scholar
  13. 13.
    Behrendt N (2004) The urokinase receptor (uPAR) and the uPAR-associated protein (uPARAP/Endo180): membrane proteins engaged in matrix turnover during tissue remodeling. Biol Chem 385:103–136. doi: 10.1515/BC.2004.031 PubMedCrossRefGoogle Scholar
  14. 14.
    Wienke D, Davies GC, Johnson DA, Sturge J, Lambros MB, Savage K, Elsheikh SE, Green AR, Ellis IO, Robertson D, Reis-Filho JS, Isacke CM (2007) The collagen receptor Endo180 (CD280) is expressed on basal-like breast tumor cells and promotes tumor growth in vivo. Cancer Res 67:10230–10240. doi: 10.1158/0008-5472.CAN-06-3496 PubMedCrossRefGoogle Scholar
  15. 15.
    Sturge J, Wienke D, East L, Jones GE, Isacke CM (2003) GPI-anchored uPAR requires Endo180 for rapid directional sensing during chemotaxis. J Cell Biol 162:789–794. doi: 10.1083/jcb.200302124 PubMedCrossRefGoogle Scholar
  16. 16.
    Sturge J, Wienke D, Isacke CM (2006) Endosomes generate localized Rho-ROCK-MLC2-based contractile signals via Endo180 to promote adhesion disassembly. J Cell Biol 175:337–347. doi: 10.1083/jcb.200602125 PubMedCrossRefGoogle Scholar
  17. 17.
    Wienke D, MacFadyen JR, Isacke CM (2003) Identification and characterization of the endocytic transmembrane glycoprotein Endo180 as a novel collagen receptor. Mol Biol Cell 14:3592–3604. doi: 10.1091/mbc.E02-12-0814 PubMedCrossRefGoogle Scholar
  18. 18.
    Kjoller L, Engelholm LH, Hoyer-Hansen M, Dano K, Bugge TH, Behrendt N (2004) uPARAP/endo180 directs lysosomal delivery and degradation of collagen IV. Exp Cell Res 293:106–116PubMedCrossRefGoogle Scholar
  19. 19.
    Engelholm LH, Ingvarsen S, Jurgensen HJ, Hillig T, Madsen DH, Nielsen BS, Behrendt N (2009) The collagen receptor uPARAP/Endo180. Front Biosci 14:2103–2114PubMedCrossRefGoogle Scholar
  20. 20.
    Gondi CS, Lakka SS, Dinh DH, Olivero WC, Gujrati M, Rao JS (2004) Downregulation of uPA, uPAR and MMP-9 using small, interfering, hairpin RNA (siRNA) inhibits glioma cell invasion, angiogenesis and tumor growth. Neuron Glia Biol 1:165–176. doi: 10.1017/s1740925x04000237 PubMedCrossRefGoogle Scholar
  21. 21.
    Kinder DH, Berger MS, Mueller BA, Silber JR (1993) Urokinase plasminogen activator is elevated in human astrocytic gliomas relative to normal adjacent brain. Oncol Res 5:409–414PubMedGoogle Scholar
  22. 22.
    Mohanam S, Sawaya R, McCutcheon I, Ali-Osman F, Boyd D, Rao JS (1993) Modulation of in vitro invasion of human glioblastoma cells by urokinase-type plasminogen activator receptor antibody. Cancer Res 53:4143–4147PubMedGoogle Scholar
  23. 23.
    Gondi CS, Lakka SS, Yanamandra N, Siddique K, Dinh DH, Olivero WC, Gujrati M, Rao JS (2003) Expression of antisense uPAR and antisense uPA from a bicistronic adenoviral construct inhibits glioma cell invasion, tumor growth, and angiogenesis. Oncogene 22:5967–5975. doi: 10.1038/sj.onc.1206535 PubMedCrossRefGoogle Scholar
  24. 24.
    Zhao Y, Lyons CE Jr, Xiao A, Templeton DJ, Sang QA, Brew K, Hussaini IM (2008) Urokinase directly activates matrix metalloproteinases-9: a potential role in glioblastoma invasion. Biochem Biophys Res Commun 369:1215–1220. doi: 10.1016/j.bbrc.2008.03.038 PubMedCrossRefGoogle Scholar
  25. 25.
    Mohanam S, Jasti SL, Kondraganti SR, Chandrasekar N, Kin Y, Fuller GN, Lakka SS, Kyritsis AP, Dinh DH, Olivero WC, Gujrati M, Yung WK, Rao JS (2001) Stable transfection of urokinase-type plasminogen activator antisense construct modulates invasion of human glioblastoma cells. Clin Cancer Res 7:2519–2526PubMedGoogle Scholar
  26. 26.
    Kunigal S, Gondi CS, Gujrati M, Lakka SS, Dinh DH, Olivero WC, Rao JS (2006) SPARC-induced migration of glioblastoma cell lines via uPA-uPAR signaling and activation of small GTPase RhoA. Int J Oncol 29:1349–1357PubMedGoogle Scholar
  27. 27.
    Chandrasekar N, Mohanam S, Gujrati M, Olivero WC, Dinh DH, Rao JS (2003) Downregulation of uPA inhibits migration and PI3 k/Akt signaling in glioblastoma cells. Oncogene 22:392–400. doi: 10.1038/sj.onc.1206164 PubMedCrossRefGoogle Scholar
  28. 28.
    Gondi CS, Lakka SS, Dinh DH, Olivero WC, Gujrati M, Rao JS (2007) Intraperitoneal injection of a hairpin RNA-expressing plasmid targeting urokinase-type plasminogen activator (uPA) receptor and uPA retards angiogenesis and inhibits intracranial tumor growth in nude mice. Clin Cancer Res 13:4051–4060. doi: 10.1158/1078-0432.CCR-06-3032 PubMedCrossRefGoogle Scholar
  29. 29.
    Go Y, Chintala SK, Mohanam S, Gokaslan Z, Venkaiah B, Bjerkvig R, Oka K, Nicolson GL, Sawaya R, Rao JS (1997) Inhibition of in vivo tumorigenicity and invasiveness of a human glioblastoma cell line transfected with antisense uPAR vectors. Clin Exp Metastasis 15:440–446PubMedCrossRefGoogle Scholar
  30. 30.
    Mohanam S, Chintala SK, Go Y, Bhattacharya A, Venkaiah B, Boyd D, Gokaslan ZL, Sawaya R, Rao JS (1997) In vitro inhibition of human glioblastoma cell line invasiveness by antisense uPA receptor. Oncogene 14:1351–1359. doi: 10.1038/sj.onc.1200963 PubMedCrossRefGoogle Scholar
  31. 31.
    Lakka SS, Gondi CS, Dinh DH, Olivero WC, Gujrati M, Rao VH, Sioka C, Rao JS (2005) Specific interference of urokinase-type plasminogen activator receptor and matrix metalloproteinase-9 gene expression induced by double-stranded RNA results in decreased invasion, tumor growth, and angiogenesis in gliomas. J Biol Chem 280:21882–21892. doi: 10.1074/jbc.M408520200 PubMedCrossRefGoogle Scholar
  32. 32.
    Gondi CS, Lakka SS, Dinh DH, Olivero WC, Gujrati M, Rao JS (2004) RNAi-mediated inhibition of cathepsin B and uPAR leads to decreased cell invasion, angiogenesis and tumor growth in gliomas. Oncogene 23:8486–8496. doi: 10.1038/sj.onc.1207879 PubMedCrossRefGoogle Scholar
  33. 33.
    Lakka SS, Gondi CS, Yanamandra N, Dinh DH, Olivero WC, Gujrati M, Rao JS (2003) Synergistic down-regulation of urokinase plasminogen activator receptor and matrix metalloproteinase-9 in SNB19 glioblastoma cells efficiently inhibits glioma cell invasion, angiogenesis, and tumor growth. Cancer Res 63:2454–2461PubMedGoogle Scholar
  34. 34.
    Mohan PM, Lakka SS, Mohanam S, Kin Y, Sawaya R, Kyritsis AP, Nicolson GL, Rao JS (1999) Downregulation of the urokinase-type plasminogen activator receptor through inhibition of translation by antisense oligonucleotide suppresses invasion of human glioblastoma cells. Clin Exp Metastasis 17:617–621PubMedCrossRefGoogle Scholar
  35. 35.
    Mohan PM, Chintala SK, Mohanam S, Gladson CL, Kim ES, Gokaslan ZL, Lakka SS, Roth JA, Fang B, Sawaya R, Kyritsis AP, Rao JS (1999) Adenovirus-mediated delivery of antisense gene to urokinase-type plasminogen activator receptor suppresses glioma invasion and tumor growth. Cancer Res 59:3369–3373PubMedGoogle Scholar
  36. 36.
    Mohanam S, Go Y, Sawaya R, Venkaiah B, Mohan PM, Kouraklis GP, Gokaslan ZL, Lagos GK, Rao JS (1999) Elevated levels of urokinase-type plasminogen activator and its receptor during tumor growth in vivo. Int J Oncol 14:169–174PubMedGoogle Scholar
  37. 37.
    Gumbiner BM (1996) Cell adhesion: the molecular basis of tissue architecture and morphogenesis. Cell 84:345–357PubMedCrossRefGoogle Scholar
  38. 38.
    Lauffenburger DA, Horwitz AF (1996) Cell migration: a physically integrated molecular process. Cell 84:359–369PubMedCrossRefGoogle Scholar
  39. 39.
    Tabu K, Ohba Y, Suzuki T, Makino Y, Kimura T, Ohnishi A, Sakai M, Watanabe T, Tanaka S, Sawa H (2007) Oligodendrocyte lineage transcription factor 2 inhibits the motility of a human glial tumor cell line by activating RhoA. Mol Cancer Res 5:1099–1109. doi: 10.1158/1541-7786.MCR-07-0096 PubMedCrossRefGoogle Scholar
  40. 40.
    Ren XD, Kiosses WB, Sieg DJ, Otey CA, Schlaepfer DD, Schwartz MA (2000) Focal adhesion kinase suppresses Rho activity to promote focal adhesion turnover. J Cell Sci 113(Pt 20):3673–3678PubMedGoogle Scholar
  41. 41.
    Arthur WT, Burridge K (2001) RhoA inactivation by p190RhoGAP regulates cell spreading and migration by promoting membrane protrusion and polarity. Mol Biol Cell 12:2711–2720PubMedGoogle Scholar
  42. 42.
    Cox EA, Sastry SK, Huttenlocher A (2001) Integrin-mediated adhesion regulates cell polarity and membrane protrusion through the Rho family of GTPases. Mol Biol Cell 12:265–277PubMedGoogle Scholar
  43. 43.
    Shiratsuchi A, Ichiki M, Okamoto Y, Ueda N, Sugimoto N, Takuwa Y, Nakanishi Y (2009) Inhibitory effect of N-palmitoylphosphatidylethanolamine on macrophage phagocytosis through inhibition of Rac1 and Cdc42. J Biochem 145:43–50. doi: 10.1093/jb/mvn139 PubMedCrossRefGoogle Scholar
  44. 44.
    Vial E, Sahai E, Marshall CJ (2003) ERK-MAPK signaling coordinately regulates activity of Rac1 and RhoA for tumor cell motility. Cancer Cell 4:67–79PubMedCrossRefGoogle Scholar
  45. 45.
    Ilic D, Furuta Y, Kanazawa S, Takeda N, Sobue K, Nakatsuji N, Nomura S, Fujimoto J, Okada M, Yamamoto T (1995) Reduced cell motility and enhanced focal adhesion contact formation in cells from FAK-deficient mice. Nature 377:539–544. doi: 10.1038/377539a0 PubMedCrossRefGoogle Scholar
  46. 46.
    Kjoller L, Hall A (2001) Rac mediates cytoskeletal rearrangements and increased cell motility induced by urokinase-type plasminogen activator receptor binding to vitronectin. J Cell Biol 152:1145–1157PubMedCrossRefGoogle Scholar
  47. 47.
    Goldberg L, Kloog Y (2006) A Ras inhibitor tilts the balance between Rac and Rho and blocks phosphatidylinositol 3-kinase-dependent glioblastoma cell migration. Cancer Res 66:11709–11717. doi: 10.1158/0008-5472.CAN-06-1878 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2010

Authors and Affiliations

  • Satoshi Takahashi
    • 1
  • Hisafumi Yamada-Okabe
    • 2
  • Kenji Hamada
    • 3
  • Shigeki Ohta
    • 4
  • Takeshi Kawase
    • 1
  • Kazunari Yoshida
    • 1
  • Masahiro Toda
    • 1
    Email author
  1. 1.Department of Neurosurgery, School of MedicineKeio UniversityTokyoJapan
  2. 2.Research Planning and Coordination Department, Gotenba Research LaboratoriesChugai Pharmaceutical Co., Ltd.ShizuokaJapan
  3. 3.Pharmaceutical Research Department, Kamakura Research LaboratoriesChugai Pharmaceutical Co., Ltd.KanagawaJapan
  4. 4.Division of Cellular Signaling, Institute for Advanced Medical Research, School of MedicineKeio UniversityTokyoJapan

Personalised recommendations