Journal of Neuro-Oncology

, Volume 103, Issue 2, pp 197–206 | Cite as

Characterization of signaling function and expression of HLA class I molecules in medulloblastoma

  • Courtney Smith
  • Mariarita Santi
  • Elisabeth J. Rushing
  • Robert Cornelison
  • Tobey J. MacDonald
  • Stanislav VukmanovicEmail author
Laboratory Investigation - Human/Animal Tissue


Although known for the important function in the immune system, MHC class I molecules are increasingly ascribed an alternative role in modifying signal transduction. In medulloblastoma, HLA class I molecules are associated with poor prognosis, and can induce ERK1/2 activation upon engagement with ligands that bind to incompletely assembled complexes (so called open conformers). We here demonstrate that ERK1/2 activation in medulloblastoma can occur in the absence of endogenously synthesized β2m, formally excluding involvement of closed HLA class conformation. In addition, several experimental observations suggest that heterogeneity of HLA class I expression may be a reflection of the status of original cells before transformation, rather than a consequence of immune-based selection of HLA-loss mutants. These results contribute to our understanding of an immune system-independent role of HLA class I in the pathology of medulloblastoma, and cancer in general.


HLA Medulloblastoma Cerebellum Signaling 



β2 microglobulin




Transporter associated with antigen processing



This work was partially supported by national Institutes of Health grant (R01 CA111835) awarded to TJM.


  1. 1.
    Pamer E, Cresswell P (1998) Mechanisms of MHC class I—restricted antigen processing. Annu Rev Immunol 16:323–358PubMedCrossRefGoogle Scholar
  2. 2.
    Vukmanovic S et al (2001) Peptide loading of nascent MHC class I molecules. Arch Immunol Therap Exp 49:195–201Google Scholar
  3. 3.
    Arosa FA, Santos SG, Powis SJ (2007) Open conformers: the hidden face of MHC-I molecules. Trends Immunol 28:115–123PubMedCrossRefGoogle Scholar
  4. 4.
    Ericsson C et al (2001) Association of HLA class I and class II antigen expression and mortality in uveal melanoma. Invest Ophthalmol Vis Sci 42:2153–2156PubMedGoogle Scholar
  5. 5.
    Madjd Z et al (2005) Total loss of MHC class I is an independent indicator of good prognosis in breast cancer. Int J Cancer 117:248–255PubMedCrossRefGoogle Scholar
  6. 6.
    Ramnath N et al (2006) Is downregulation of MHC class I antigen expression in human non-small cell lung cancer associated with prolonged survival? Cancer Immunol Immunother 55:891–899PubMedCrossRefGoogle Scholar
  7. 7.
    Smith C et al (2009) A novel role of HLA class I in the pathology of medulloblastoma. J Transl Med 7:59PubMedCrossRefGoogle Scholar
  8. 8.
    Delp K et al (2000) Functional deficiencies of components of the MHC class I antigen pathway in human tumors of epithelial origin. Bone Marrow Transplant 25:S88–S95PubMedCrossRefGoogle Scholar
  9. 9.
    Agrawal S, Kishore MC (2000) MHC class I gene expression and regulation. J Hematother Stem Cell Res 9:795–812PubMedCrossRefGoogle Scholar
  10. 10.
    Nacht M et al (2001) Molecular characteristics of non-small cell lung cancer. Proc Natl Acad Sci USA 98:15203–15208PubMedCrossRefGoogle Scholar
  11. 11.
    Kamarashev J et al (2001) TAP1 down-regulation in primary melanoma lesions: an independent marker of poor prognosis. Int J Cancer 95:23–28PubMedCrossRefGoogle Scholar
  12. 12.
    Cabrera T et al (2003) Analysis of HLA expression in human tumor tissues. Cancer Immunol Immunother 52:1–9PubMedGoogle Scholar
  13. 13.
    Chang CC, Ferrone S (2007) Immune selective pressure and HLA class I antigen defects in malignant lesions. Cancer Immunol Immunother 56:227–236PubMedCrossRefGoogle Scholar
  14. 14.
    Watson NFS et al (2006) Immunosurveillance is active in colorectal cancer as downregulation but not complete loss of MHC class I expression correlates with a poor prognosis. Int J Cancer 118:6–10PubMedCrossRefGoogle Scholar
  15. 15.
    Sallinen SL et al (2000) Identification of differentially expressed genes in human gliomas by DNA microarray and tissue chip techniques. Cancer Res 60:6617–6622PubMedGoogle Scholar
  16. 16.
    Albers A et al (2005) Antitumor activity of human papillomavirus type 16 E7-specific T cells against virally infected squamous cell carcinoma of the head and neck. Cancer Res 65:11146–11455PubMedCrossRefGoogle Scholar
  17. 17.
    Maziarz RT et al (1986) The human HLA-specific monoclonal antibody W6/32 recognizes a discontinuous epitope within the alpha 2 domain of murine H-2Db. Immunogenetics 24:206–208PubMedGoogle Scholar
  18. 18.
    Jefferies WA, MacPherson GG (1987) Expression of the W6/32 HLA epitope by cells of rat, mouse, human and other species: critical dependence on the interaction of specific MHC heavy chains with human or bovine beta 2-microglobulin. Eur J Immunol 17:1257–1263PubMedCrossRefGoogle Scholar
  19. 19.
    Tanabe M et al (1992) Structural and functional analysis of monomorphic determinants recognized by monoclonal antibodies reacting with the HLA class I alpha 3 domain. J Immunol 148:3202–3209PubMedGoogle Scholar
  20. 20.
    Perosa F et al (2003) Beta 2-microglobulin-free HLA class I heavy chain epitope mimicry by monoclonal antibody HC-10-specific peptide. J Immunol 171:1918–1926PubMedGoogle Scholar
  21. 21.
    Miyaki K et al (1990) Immunohistochemical detection and correlation between MHC antigen and cell-mediated immune system in recurrent glioma by APAAP method. Neurol Med Chir (Tokyo) 30:649–653CrossRefGoogle Scholar
  22. 22.
    Saito T et al (1988) Immunohistochemical analysis of tumor-infiltrating lymphocytes and major histocompatibility antigens in human gliomas and metastatic brain tumors. Surg Neurol 29:435–442PubMedCrossRefGoogle Scholar
  23. 23.
    Abraham H et al (2001) Cell formation in the cortical layers of the developing human cerebellum. Int J Dev Neurosci 19:53–62PubMedCrossRefGoogle Scholar
  24. 24.
    Rakic P, Sidman RL (1970) Histogenesis of cortical layers in human cerebellum, particularly the lamina dissecans. J Comp Neurol 139:473–500PubMedCrossRefGoogle Scholar
  25. 25.
    Bodey B, Bodey BJ, Siegel SE (1995) Immunophenotypic characterization of infiltrating polynuclear and mononuclear cells in childhood brain tumors. Mod Pathol 8:333–338PubMedGoogle Scholar
  26. 26.
    Raffaghello L et al (2007) Expression and functional analysis of human leukocyte antigen class I antigen-processing machinery in medulloblastoma. Cancer Res 67:5471–5478PubMedCrossRefGoogle Scholar
  27. 27.
    Demaria S, Schwab R, Bushkin Y (1992) The origin and fate of beta 2m-free MHC class I molecules induced on activated T cells. Cell Immunol 142:103–113PubMedCrossRefGoogle Scholar
  28. 28.
    Santos SG, Powis SJ, Arosa FA (2004) Misfolding of major histocompatibility complex class I molecules in activated T cells allows cis-interactions with receptors and signaling molecules and is associated with tyrosine phosphorylation. J Biol Chem 279:53062–53070PubMedCrossRefGoogle Scholar
  29. 29.
    Matko J et al (1994) Clustering of class I HLA molecules on the surfaces of activated and transformed human cells. J Immunol 152:3353–3360PubMedGoogle Scholar
  30. 30.
    Bodnar A et al (2003) Class I HLA oligomerization at the surface of B cells is controlled by exogenous beta(2)-microglobulin: implications in activation of cytotoxic T lymphocytes. Int Immunol 15:331–339PubMedCrossRefGoogle Scholar
  31. 31.
    Schreiber AB, Schlessinger J, Edidin M (1984) Interaction between major histocompatibility complex antigens and epidermal growth factor receptors on human cells. J Cell Biol 98:725–731PubMedCrossRefGoogle Scholar
  32. 32.
    Claas FH et al (1986) The interaction between gamma-type endorphins and HLA class I antigens. Hum Immunol 15:347–356PubMedCrossRefGoogle Scholar
  33. 33.
    Mommaas AM et al (1991) Internalization of MHC class I molecules is a prerequisite for endocytosis of endorphin by lymphocytes. Clin Exp Immunol 84:170–174PubMedCrossRefGoogle Scholar
  34. 34.
    Bushkin Y et al (1986) A new HLA-linked T cell membrane molecule, related to the beta chain of the clonotypic receptor, is associated with T3. J Exp Med 164:458–473PubMedCrossRefGoogle Scholar
  35. 35.
    Bene L et al (1994) Lateral organization of the ICAM-1 molecule at the surface of human lymphoblasts: a possible model for its co-distribution with the IL-2 receptor, class I and class II HLA molecules. Eur J Immunol 24:2115–2123PubMedCrossRefGoogle Scholar
  36. 36.
    Due C, Simonsen M, Olsson L (1986) The major histocompatibility complex class I heavy chain as a structural subunit of the human cell membrane insulin receptor: implications for the range of biological functions of histocompatibility antigens. Proc Natl Acad Sci USA 83:6007–6011PubMedCrossRefGoogle Scholar
  37. 37.
    Ramalingam TS, Chakrabarti A, Edidin M (1997) Interaction of class I human leukocyte antigen (HLA-I) molecules with insulin receptors and its effect on the insulin-signaling cascade. Mol Biol Cell 8:2463–2474PubMedGoogle Scholar
  38. 38.
    Geppert TD et al (1989) Activation of human T cell clones and Jurkat cells by cross-linking class I MHC molecules. J Immunol 142:3763–3772PubMedGoogle Scholar
  39. 39.
    Skov S, Bregenholt S, Claesson MH (1997) MHC class I ligation of human T cells activates the ZAP70 and p56lck tyrosine kinases, leads to an alternative phenotype of the TCR/CD3 zeta-chain, and induces apoptosis. J Immunol 158:3189–3196PubMedGoogle Scholar
  40. 40.
    Kadin ME, Rubinstein LJ, Nelson JS (1970) Neonatal cerebellar medulloblastoma originating from the fetal external granular layer. J Neuropathol Exp Neurol 29:583–600PubMedCrossRefGoogle Scholar
  41. 41.
    Reddy AT, Packer RJ (1999) Medulloblastoma. Curr Opin Neurol 12:681–685PubMedCrossRefGoogle Scholar
  42. 42.
    McConnell MJ et al (2009) H2-K(b) and H2-D(b) regulate cerebellar long-term depression and limit motor learning. Proc Natl Acad Sci USA 106:6784–6789PubMedCrossRefGoogle Scholar
  43. 43.
    Boulanger LM, Shatz CJ (2004) Immune signalling in neural development, synaptic plasticity and disease. Nat Rev Neurosci 5:521–531PubMedCrossRefGoogle Scholar
  44. 44.
    Lampson LA, Fisher CA (1984) Weak HLA and beta-2-microglobulin expression of neuronal cell lines can be modulated by interferon. Proc Natl Acad Sci USA 81:6476–6480PubMedCrossRefGoogle Scholar
  45. 45.
    Wong GH, Bartlett PF, Clark-Lewis I, Battye F, Schrader JW (1984) Inducible expression of H-2 and Ia antigens on brain cells. Nature 310:688–691PubMedCrossRefGoogle Scholar
  46. 46.
    Maehlen J, Schroder HD, Klareskog L, Olsson T, Kristensson K (1998) Axotomy induces MHC class I antigen expression on rate nerve cells. Neurosci Lett 92:8–13CrossRefGoogle Scholar
  47. 47.
    Streit WJ, Graeber MB, Kreutzberg GW (1989) Peripheral nerve lesion produces increased levels of major histocompatiblity complex antigens in the central nervous system. J Neuroimmunol 21:117–123PubMedCrossRefGoogle Scholar
  48. 48.
    Pereira RA, Tscharke DC, Simmons A (1994) Upregulation of class I major histocompatibility complex gene expression in primary sensory neurons, satellite cells, and Schwann cells of mice in response to acute but not latent herpes simplex virus infection in vivo. J Exp Med 180:841–850PubMedCrossRefGoogle Scholar
  49. 49.
    Neumann H, Cavalie A, Jenne D, Wekerle H (1995) Induction of MHC class I genes in neurons. Science 269:549–552PubMedCrossRefGoogle Scholar
  50. 50.
    Fujimaki H, Hikawa N, Nagoya M, Nagata T, Minami M (1996) IFN-gamma induces expression of MHC class I molecules in adult mouse dorsal root ganglion neurones. Neuroreport 7:2951–2955PubMedCrossRefGoogle Scholar
  51. 51.
    Neumann H, Schmidt H, Cavalie A, Jenne D, Wekerle H (1997) Major Histocompatibility Complex (MHC) Class I Gene Expression in Single Neurons of the Central Nervous System: Differential REgulation by Interferon (IFN)-gamma and tumor Necrosis FActor (TNF)-alpha. J Exp Med 185:305–316PubMedCrossRefGoogle Scholar
  52. 52.
    Redwine JM, Buchmeier MJ, Evans CF (2001) In vivo expression of major histocompatibility complex molecules on oligodendrocytes and neurons during viral infection. Am J Pathol 159:1219–1224PubMedCrossRefGoogle Scholar
  53. 53.
    Foster JA, Quan N, Stern EL, Kristensson K, Herkenham M (2002) Induced neuronal expression of class I major histoompatibility complex mRNA in acute and chronic inflammation models. J Neuroimmunol 131:83–91PubMedCrossRefGoogle Scholar
  54. 54.
    Corriveau R, Huh GS, Shatz CJ (1998) Regulation of class I MHC gene expression in the developing and mature CNS by neural activity. Neuron 21:505–520PubMedCrossRefGoogle Scholar
  55. 55.
    Lidman O, Olsson T, Piehl F (1999) Expression of nonclassical MHC class I (RT1-U) in certain neuronal populations of the central nervous system. Eur J Neurosci 11:4468–4472PubMedCrossRefGoogle Scholar
  56. 56.
    Linda H, Hammarberg H, Piehl F, Khademi M, Olsson T (1999) Expression of MHC class I heavy chain and beta-2-microglobulin in rat brainstem motoneurons and nigral dopaminergic neurons. J Neuroimmunol 101:76–86PubMedCrossRefGoogle Scholar
  57. 57.
    Huh G, Boulanger LM, Du H, Riquelme PA, Brotz TM, Shatz CJ (2000) Functional requirement for class I MHC in CNS development and plasticity. Science 15:2155–2159CrossRefGoogle Scholar
  58. 58.
    Miralvès J et al (2007) High levels of MeCP2 depress MHC class I expression in neuronal cells. PLOS One 2:e1354PubMedCrossRefGoogle Scholar
  59. 59.
    Ishii T, Hirota J, Mombaerts P (2003) Combinatorial coexpression of neural and immune multigene families in mouse vomeronasal sensory neurons. Curr Biol 13:394–400PubMedCrossRefGoogle Scholar
  60. 60.
    Loconto J et al (2003) Functional expression of murine V2R pheromone receptors involves selective association with the M10 and M1 families of MHC class Ib molecules. Cell 112:607–618PubMedCrossRefGoogle Scholar
  61. 61.
    Sur M, Weller RE, Sherman SM (1984) Development of X- and Y-cell retinogeniculate terminations in kittens. Nature 310:246–249PubMedCrossRefGoogle Scholar
  62. 62.
    LeVay S, Stryker MP, Shatz CJ (1978) Ocular dominance columns and their development in layer IV of the cat’s visual cortex: a quantitative study. J Comp Neurol 179:223–244PubMedCrossRefGoogle Scholar
  63. 63.
    Katz LC, Shatz CJ (1996) Synaptic activity and the construction of cortical circuits. Science 274:1133–1138PubMedCrossRefGoogle Scholar
  64. 64.
    Malenka RC (1994) Synaptic plasticity in the hippocampus: LTP and LTD. Cell 78:535–538PubMedCrossRefGoogle Scholar
  65. 65.
    Crair MC, Malenka RC (1995) A critical period for long-term potentiation at thalamocortical synapses. Nature 375:325–328PubMedCrossRefGoogle Scholar
  66. 66.
    Kirkwood A, Lee HK, Bear MF (1995) Co-regulation of long-term potentiation and experience-dependent synaptic plasticity in visual cortex by age and experience. Nature 375:328–331PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2010

Authors and Affiliations

  • Courtney Smith
    • 1
    • 3
  • Mariarita Santi
    • 2
  • Elisabeth J. Rushing
    • 4
  • Robert Cornelison
    • 5
  • Tobey J. MacDonald
    • 1
    • 3
  • Stanislav Vukmanovic
    • 1
    • 3
    Email author
  1. 1.Center for Cancer and Immunology Research, Children’s Research InstituteChildren’s National Medical CenterWashingtonUSA
  2. 2.Department of PathologyChildren’s National Medical CenterWashingtonUSA
  3. 3.Department of PediatricsGeorge Washington University School of MedicineWashingtonUSA
  4. 4.Department of NeuropathologyArmed Forces Institute of PathologyWashingtonUSA
  5. 5.Cancer Genetics BranchNational Human Genome Research Institute NIHBethesdaUSA

Personalised recommendations