Journal of Neuro-Oncology

, Volume 102, Issue 2, pp 171–178 | Cite as

EGFR immunolabeling pattern may discriminate low-grade gliomas from gliosis

  • Fanny Burel-VandenbosEmail author
  • Maxime Benchetrit
  • Catherine Miquel
  • Denys Fontaine
  • Romane Auvergne
  • Christine Lebrun-Frenay
  • Nathalie Cardot-Leccia
  • Jean-François Michiels
  • Veronique Paquis-Flucklinger
  • Thierry Virolle
Lab Investigation - Human/Animal Tissue


Overexpression of epidermal growth factor receptor (EGFR) is common in gliomas. Gliomas are infiltrating tumors in which neoplastic glial cells can be intermingled with reactive glial cells, particularly in diffuse low-grade gliomas. As overexpression of EGFR has also been described in gliosis, it can be difficult to evaluate EGFR immunolabeling in diffuse low-grade gliomas because of this cell mix. We compared EGFR immunolabeling between gliosis and low-grade gliomas in order to identify distinctive criteria. We studied EGFR expression in 28 cases of gliosis and 39 diffuse low-grade gliomas (23 astrocytomas and 16 oligodendrogliomas). EGFR immunohistochemistry staining was performed on paraffin-embedded sections with a mouse monoclonal antibody (clone 2-18C9; Dako). Co-expression of EGFR with Olig2, Mib-1, and p53 was assessed in seven cases of low-grade gliomas using double immunolabeling. Then, EGFR immunostaining was blindly tested on 22 small specimens of indeterminate glial lesions provided by a reference neuropathological center. Two pathologists of our local center were asked to classify the lesions into diffuse low-grade glioma or gliosis according to the pattern of EGFR expression. Weak expression of EGFR was commonly detected in gliosis (23/28 cases). Strongly-stained cells were absent. Positive cells had reactive glial cell morphology. EGFR expression in gliomas was characterized by constant strongly-stained cells (39/39 cases). All strongly-stained cells had a high nucleus-to-cytoplasm ratio, with minimal to moderate nuclear atypia. Most of the strongly EGFR-positive cells were Olig2-positive. All the cases displayed cells co-expressing EGFR and Mib-1. In three p53-positive tumors, many p53-positive cells were strongly EGFR-positive. On the basis of EGFR expression, 14 out of the 22 indeterminate cases were classified as gliomas and eight as gliosis by both pathologists. Concordance with the initial diagnosis established by the reference center and concordance between the pathologists were 100%. Our results confirm that weak EGFR expression can be detected by immunohistochemistry in gliosis. They show that strong EGFR expression may be specific for neoplastic glial cells. As all low-grade gliomas contained strongly-stained cells in our study, we believe that EGFR immunohistochemistry could be a useful tool for detection of neoplastic glial cells in case of indeterminate glial lesions.


EGFR Immunohistochemistry Gliosis Low-grade gliomas 



The authors thank Dr. Dominique Henin, Dr. Renaud Tamisier, and Dr. Brigitte Dunais for helping in the preparation of this article.


  1. 1.
    Yano S, Kondo K, Yamaguchi M, Richmond G, Hutchison M, Wakeling A, Averbuch S, Wadsworth P (2003) Distribution and function of EGFR in human tissue and the effect of EGFR tyrosine kinase inhibition. Anticancer Res 23:3639–3650PubMedGoogle Scholar
  2. 2.
    Wong RW, Guillaud L (2004) The role of epidermal growth factor and its receptors in mammalian CNS. Cytokine Growth Factor Rev 15:147–156PubMedCrossRefGoogle Scholar
  3. 3.
    Nieto-Sampedro M, Gomez-Pinilla F, Knauer DJ, Broderick JT (1988) Epidermal growth factor receptor immunoreactivity in rat brain astrocytes. Response to injury. Neurosci Lett 91:276–282PubMedCrossRefGoogle Scholar
  4. 4.
    Junier MP, Coulpier M, Le Forestier N, Cadusseau J, Suzuki F, Peschanski M, Dreyfus PA (1994) Transforming growth factor alpha (TGF alpha) expression in degenerating motoneurons of the murine mutant wobbler: a neuronal signal for astrogliosis? J Neurosci 14:4206–4216PubMedGoogle Scholar
  5. 5.
    Ferrer I, Alcantara S, Ballabriga J, Olive M, Blanco R, Rivera R, Carmona M, Berruezo M, Pitarch S, Planas AM (1996) Transforming growth factor-alpha (TGF-alpha) and epidermal growth factor-receptor (EGF-R) immunoreactivity in normal and pathologic brain. Prog Neurobiol 49:99–123PubMedCrossRefGoogle Scholar
  6. 6.
    Planas AM, Justicia C, Soriano MA, Ferrer I (1998) Epidermal growth factor receptor in proliferating reactive glia following transient focal ischemia in the rat brain. Glia 23:120–129PubMedCrossRefGoogle Scholar
  7. 7.
    Rabchevsky AG, Weinitz JM, Coulpier M, Fages C, Tinel M, Junier MP (1998) A role for transforming growth factor alpha as an inducer of astrogliosis. J Neurosci 18:10541–10552PubMedGoogle Scholar
  8. 8.
    Grandis JR, Sok JC (2004) Signaling through the epidermal growth factor receptor during the development of malignancy. Pharmacol Ther 102:37–46PubMedCrossRefGoogle Scholar
  9. 9.
    Etienne MC, Formento JL, Lebrun-Frenay C, Gioanni J, Chatel M, Paquis P, Bernard C, Courdi A, Bensadoun RJ, Pignol JP, Francoual M, Grellier P, Frenay M, Milano G (1998) Epidermal growth factor receptor and labeling index are independent prognostic factors in glial tumor outcome. Clin Cancer Res 4:2383–2390PubMedGoogle Scholar
  10. 10.
    Feldkamp MM, Lala P, Lau N, Roncari L, Guha A (1999) Expression of activated epidermal growth factor receptors, Ras-guanosine triphosphate, and mitogen-activated protein kinase in human glioblastoma multiforme specimens. Neurosurgery 45:1442–1453PubMedCrossRefGoogle Scholar
  11. 11.
    Korshunov A, Golanov A, Sycheva R, Pronin I (1999) Prognostic value of tumour associated antigen immunoreactivity and apoptosis in cerebral glioblastomas: an analysis of 168 cases. J Clin Pathol 52:574–580PubMedCrossRefGoogle Scholar
  12. 12.
    Chakravarti A, Delaney MA, Noll E, Black PM, Loeffler JS, Muzikansky A, Dyson NJ (2001) Prognostic and pathologic significance of quantitative protein expression profiling in human gliomas. Clin Cancer Res 7:2387–2395PubMedGoogle Scholar
  13. 13.
    Shinojima N, Tada K, Shiraishi S, Kamiryo T, Kochi M, Nakamura H, Makino K, Saya H, Hirano H, Kuratsu J, Oka K, Ishimaru Y, Ushio Y (2003) Prognostic value of epidermal growth factor receptor in patients with glioblastoma multiforme. Cancer Res 63:6962–6970PubMedGoogle Scholar
  14. 14.
    Faillot T, Magdelenat H, Mady E, Stasiecki P, Fohanno D, Gropp P, Poisson M, Delattre JY (1996) A phase I study of an anti-epidermal growth factor receptor monoclonal antibody for the treatment of malignant gliomas. Neurosurgery 39:478–483PubMedCrossRefGoogle Scholar
  15. 15.
    Baselga J (2002) Why the epidermal growth factor receptor? The rationale for cancer therapy. Oncologist 7(Suppl 4):2–8PubMedCrossRefGoogle Scholar
  16. 16.
    Jendrossek V, Belka C, Bamberg M (2003) Novel chemotherapeutic agents for the treatment of glioblastoma multiforme. Expert Opin Investig Drugs 12:1899–1924PubMedCrossRefGoogle Scholar
  17. 17.
    Dancey J (2004) Epidermal growth factor receptor inhibitors in clinical development. Int J Radiat Oncol Biol Phys 58:1003–1007PubMedCrossRefGoogle Scholar
  18. 18.
    Kapoor GS, O’Rourke DM (2003) Mitogenic signaling cascades in glial tumors. Neurosurgery 52:1425–1434 (discussion 1434–1425)PubMedCrossRefGoogle Scholar
  19. 19.
    von Bossanyi P, Sallaba J, Dietzmann K, Warich-Kirches M, Kirches E (1998) Correlation of TGF-alpha and EGF-receptor expression with proliferative activity in human astrocytic gliomas. Pathol Res Pract 194:141–147Google Scholar
  20. 20.
    Kordek R, Biernat W, Alwasiak J, Maculewicz R, Yanagihara R, Liberski PP (1995) p53 protein and epidermal growth factor receptor expression in human astrocytomas. J Neurooncol 26:11–16PubMedCrossRefGoogle Scholar
  21. 21.
    Orian JM, Vasilopoulos K, Yoshida S, Kaye AH, Chow CW, Gonzales MF (1992) Overexpression of multiple oncogenes related to histological grade of astrocytic glioma. Br J Cancer 66:106–112PubMedCrossRefGoogle Scholar
  22. 22.
    Hwang SL, Chai CY, Lin HJ, Howng SL (1997) Expression of epidermal growth factor receptors and c-erbB-2 proteins in human astrocytic tumors. Kaohsiung J Med Sci 13:417–424PubMedGoogle Scholar
  23. 23.
    Mottolese M, Natali PG, Coli A, Bigotti G, Benevolo M, Cione A, Raus L, Carapella CM (1998) Comparative analysis of proliferating cell nuclear antigen and epidermal growth factor receptor expression in glial tumours: correlation with histological grading. Anticancer Res 18:1951–1956PubMedGoogle Scholar
  24. 24.
    Kleihues P, Davis RL, Ohgaki H, Burger PC, Westphal MM, Cavenee WK (2000) Diffuse astrocytoma. In: Kleihues P, Cavenee WK (eds) World Health Organization classification of tumours. Pathology and Genetics of Tumours of the Nervous system. IARC Press, Lyon, pp 22–26Google Scholar
  25. 25.
    Reifenberger J, Reifenberger G, Ichimura K, Schmidt EE, Wechsler W, Collins VP (1996) Epidermal growth factor receptor expression in oligodendroglial tumors. Am J Pathol 149:29–35PubMedGoogle Scholar
  26. 26.
    Broholm H, Bols B, Heegaard S, Braendstrup O (1999) Immunohistochemical investigation of p53 and EGFR expression of oligodendrogliomas. Clin Neuropathol 18:176–180PubMedGoogle Scholar
  27. 27.
    Hoang-Xuan K, He J, Huguet S, Mokhtari K, Marie Y, Kujas M, Leuraud P, Capelle L, Delattre JY, Poirier J, Broet P, Sanson M (2001) Molecular heterogeneity of oligodendrogliomas suggests alternative pathways in tumor progression. Neurology 57:1278–1281PubMedGoogle Scholar
  28. 28.
    Daumas-Duport C, Varlet P, Tucker ML, Beuvon F, Cervera P, Chodkiewicz JP (1997) Oligodendrogliomas: part I: patterns of growth, histological diagnosis, clinical and imaging correlations: a study of 153 cases. J Neurooncol 34:37–59PubMedCrossRefGoogle Scholar
  29. 29.
    Cavenee WK, Furnari FB, Nagane M, Huang H-JS, Newcomb EW, Bigner DD, Weller M, Berens ME, Plate KH, Israel MA, Noble MD, Kleihues P (2000) Diffusely infiltrating astrocytomas. In: Kleihues P, Cavenee WK (eds) World Health Organization classification of tumours. Pathology and genetics of tumours of the nervous system. IARC Press, Lyon, pp 10–21Google Scholar
  30. 30.
    Yaziji H, Massarani-Wafai R, Gujrati M, Kuhns JG, Martin AW, Parker JCJ (1996) Role of p53 immunohistochemistry in differentiating reactive gliosis from malignant astrocytic lesions. Am J Surg Pathol 20:1086–1090PubMedCrossRefGoogle Scholar
  31. 31.
    Prayson RA, Agamanolis DP, Cohen ML, Estes ML, Kleinschmidt-DeMasters BK, Abdul-Karim F, McClure SP, Sebek BA, Vinay R (2000) Interobserver reproducibility among neuropathologists and surgical pathologists in fibrillary astrocytoma grading. J Neurol Sci 175:33–39PubMedCrossRefGoogle Scholar
  32. 32.
    Spaulding DC, Spaulding BO (2002) Epidermal growth factor receptor expression and measurement in solid tumors. Semin Oncol 29:45–54PubMedGoogle Scholar
  33. 33.
    Werner MH, Nanney LB, Stoscheck CM, King LE (1988) Localization of immunoreactive epidermal growth factor receptors in human nervous system. J Histochem Cytochem 36:81–86PubMedGoogle Scholar
  34. 34.
    Gomez-Pinilla F, Knauer DJ, Nieto-Sampedro M (1988) Epidermal growth factor receptor immunoreactivity in rat brain. Development and cellular localization. Brain Res 438:385–390PubMedCrossRefGoogle Scholar
  35. 35.
    Damjanov I, Mildner B, Knowles BB (1986) Immunohistochemical localization of the epidermal growth factor receptor in normal human tissues. Lab Invest 55:588–592PubMedGoogle Scholar
  36. 36.
    Junier MP (2000) What role(s) for TGFalpha in the central nervous system? Prog Neurobiol 62:443–473PubMedCrossRefGoogle Scholar
  37. 37.
    Sabattini E, Bisgaard K, Ascani S, Poggi S, Piccioli M, Ceccarelli C, Pieri F, Fraternali-Orcioni G, Pileri SA (1998) The EnVision++ system: a new immunohistochemical method for diagnostics and research. Critical comparison with the APAAP, ChemMate, CSA, LABC, and SABC techniques. J Clin Pathol 51:506–511PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2010

Authors and Affiliations

  • Fanny Burel-Vandenbos
    • 1
    • 6
    • 7
    Email author
  • Maxime Benchetrit
    • 1
  • Catherine Miquel
    • 2
  • Denys Fontaine
    • 3
  • Romane Auvergne
    • 1
  • Christine Lebrun-Frenay
    • 4
  • Nathalie Cardot-Leccia
    • 1
  • Jean-François Michiels
    • 1
  • Veronique Paquis-Flucklinger
    • 5
  • Thierry Virolle
    • 6
  1. 1.Department of PathologyUniversity Hospital of NiceNiceFrance
  2. 2.Department of Pathology-Neuro-oncology, Sainte-Anne Hospital and Faculté CochinPort-RoyalUniversity Paris VParisFrance
  3. 3.Department of NeurosurgeryUniversity Hospital of NiceNiceFrance
  4. 4.Department of NeurologyUniversity Hospital of NiceNiceFrance
  5. 5.Department of GeneticsUniversity Hospital of NiceNiceFrance
  6. 6.INSERM U898/UNSA Stem Cells, Cancer and Development, Faculty of MedicineUniversité de Nice Sophia-AntipolisNiceFrance
  7. 7.Laboratoire Central d’Anatomie PathologiqueHopital PasteurNiceFrance

Personalised recommendations