Journal of Neuro-Oncology

, Volume 102, Issue 1, pp 95–103 | Cite as

Volumetric analysis of functional diffusion maps is a predictive imaging biomarker for cytotoxic and anti-angiogenic treatments in malignant gliomas

  • Benjamin M. Ellingson
  • Mark G. Malkin
  • Scott D. Rand
  • Pete S. LaViolette
  • Jennifer M. Connelly
  • Wade M. Mueller
  • Kathleen M. Schmainda
Clinical Study – Patient Study

Abstract

Anti-angiogenic agents targeting brain tumor neovasculature may increase progression-free survival in patients with recurrent malignant gliomas. However, when these patients do recur it is not always apparent as an increase in enhancing tumor volume on MRI, which has been the standard of practice for following patients with brain tumors. Therefore alternative methods are needed to evaluate patients treated with these novel therapies. Furthermore, a method that can also provide useful information for the evaluation of conventional therapies would provide an important advantage for general applicability. Diffusion-weighted magnetic resonance imaging (DWI) has the potential to serve as a valuable biomarker for these purposes. In the current study, we explore the prognostic ability of functional diffusion maps (fDMs), which examine voxel-wise changes in the apparent diffusion coefficient (ADC) over time, applied to regions of fluid-attenuated inversion recovery (FLAIR) abnormalities in patients with malignant glioma, treated with either anti-angiogenic or cytotoxic therapies. Results indicate that the rate of change in fDMs is an early predictor of tumor progression, time to progression and overall survival for both treatments, suggesting the application of fDMs in FLAIR abnormal regions may be a significant advance in brain tumor biomarker technology.

Keywords

Functional diffusion map (fDM) Diffusion MRI Glioma Bevacizumab Chemotherapy Angiogenesis Brain tumor 

Notes

Acknowledgments

This work was financially supported by NIH/NCI R21-CA109820, NIH/NCI R01-CA082500, MCW Advancing Healthier Wisconsin/Translational Brain Tumor Research Program, and MCW Cancer Center Fellowship.

References

  1. 1.
    Nghiemphu PL, Liu W, Lee Y, Than T, Graham C, Lai A, Green RM, Pope WB, Liau LM, Mischel PS, Nelson SF, Elashoff R, Cloughesy TF (2009) Bevacizumab and chemotherapy for recurrent glioblastoma: a single-institution experience. Neurology 72:1217–1222CrossRefPubMedGoogle Scholar
  2. 2.
    Vredenburgh JJ, Desjardins A, Herndon JE, Dowell JM, Reardon DA, Quinn JA, Rich JN, Sathornsumetee S, Gururangan S, Wagner M, Bigner DD, Friedman AH, Friedman HS (2007) Phase II trial of bevacizumab and irinotecan in recurrent malignant glioma. Clin Cancer Res 13:1253–1259CrossRefPubMedGoogle Scholar
  3. 3.
    Iwamoto FM, Abrey LE, Beal K, Gutin PH, Rosenblum ML, Reuter VE, DeAngelis LM, Lassman AB (2009) Patterns of relapse and prognosis after bevacizumab failure in recurrent glioblastoma. Neurology 73:1200–1206CrossRefPubMedGoogle Scholar
  4. 4.
    Norden AD, Young GS, Setayesh K, Muzikansky A, Klufas R, Ross GL, Ciampa AS, Ebbeling LG, Levy B, Drappatz J, Kesari S, Wen PY (2008) Bevacizumab for recurrent malignant gliomas: efficacy, toxicity, and patterns of recurrence. Neurology 70:779–787CrossRefPubMedGoogle Scholar
  5. 5.
    Sugahara T, Korogi Y, Kochi M, Ikushima I, Shigematu Y, Hirai T, Okudo T, Liang L, Ge Y, Komohara Y, Ushio Y, Takahashi M (1999) Usefulness of diffusion-weighted MRI with echo-planar technique in the evaluation of cellularity in gliomas. J Magn Reson Imaging 9:53–60CrossRefPubMedGoogle Scholar
  6. 6.
    Lyng H, Haraldseth O, Rofstad EK (2000) Measurements of cell density and necrotic fraction in human melanoma xenografts by diffusion weighted magnetic resonance imaging. Magn Reson Med 43:828–836CrossRefPubMedGoogle Scholar
  7. 7.
    Chenevert TL, Stegman LD, Taylor JM, Robertson PL, Greenberg HS, Rehemtulla A, Ross BD (2000) Diffusion magnetic resonance imaging: an early surrogate marker for therapeutic efficacy in brain tumors. J Natl Cancer Inst 92:2029–2036CrossRefPubMedGoogle Scholar
  8. 8.
    Hayashida Y, Hirai T, Morishita S, Kitajima M, Murakami R, Korogi Y, Makino K, Nakamura H, Ikushima I, Yamura M, Kochi M, Kuratsu JI, Yamashita Y (2006) Diffusion-weighted imaging of metastatic brain tumors: comparison with histologic type and tumor cellularity. AJNR Am J Neuroradiol 27:1419–1425PubMedGoogle Scholar
  9. 9.
    Manenti G, Di Roma M, Mancino S, Bartolucci DA, Palmieri G, Mastrangeli R, Miano R, Squillaci E, Simonetti G (2008) Malignant renal neoplasms: correlation between ADC values and cellularity in diffusion weighted magnetic resonance imaging at 3 T. Radiol Med 113:199–213CrossRefPubMedGoogle Scholar
  10. 10.
    Gauvain KM, McKinstry RC, Mukherjee P, Perry A, Neil JJ, Kaufman BA, Hayashi RJ (2001) Evaluating pediatric brain tumor cellularity with diffusion-tensor imaging. AJR Am J Roentgenol 177:449–454PubMedGoogle Scholar
  11. 11.
    Kinoshita M, Hashimoto N, Goto T, Kagawa N, Kishima H, Izumoto S, Tanaka H, Fujita N, Yoshimine T (2008) Fractional anisotropy and tumor cell density of the tumor core show positive correlation in diffusion tensor magnetic resonance imaging of malignant tumors. Neuroimage 43:29–35CrossRefPubMedGoogle Scholar
  12. 12.
    Kono K, Inoue Y, Nakayama K, Shakudo M, Morino M, Ohata K, Wakasa K, Yamada R (2001) The role of diffusion-weighted imaging in patients with brain tumors. AJNR Am J Neuroradiol 22:1081–1088PubMedGoogle Scholar
  13. 13.
    Chenevert TL, McKeever PE, Ross BD (1997) Monitoring early response of experimental brain tumors to therapy using diffusion magnetic resonance imaging. Clin Cancer Res 3:1457–1466PubMedGoogle Scholar
  14. 14.
    Moffat BA, Chenevert TL, Lawrence TS, Meyer CR, Johnson TD, Dong Q, Tsien CI, Mukherji S, Quint DJ, Gebarski SS, Robertson PL, Junck L, Rehemtulla A, Ross BD (2005) Functional diffusion map: a noninvasive MRI biomarker for early stratification of clinical brain tumor response. Proc Natl Acad Sci USA 102:5524–5529CrossRefPubMedGoogle Scholar
  15. 15.
    Moffat BA, Chenevert TL, Meyer CR, McKeever PE, Hall DE, Hoff BA, Johnson TD, Rehemtulla A, Ross BD (2006) The functional diffusion map: an imaging biomarker for the early prediction of cancer treatment outcome. Neoplasia 8:259–267CrossRefPubMedGoogle Scholar
  16. 16.
    Hamstra DA, Chenevert TL, Moffat BA, Johnson TD, Meyer CR, Mukherji S, Quint DJ, Gebarski SS, Fan X, Tsien CI, Lawrence TS, Junck L, Rehemtulla A, Ross BD (2005) Evaluation of the functional diffusion map as an early biomarker of time-to-progression and overall survival in high-grade glioma. Proc Natl Acad Sci USA 102:16759–16764CrossRefPubMedGoogle Scholar
  17. 17.
    Hamstra DA, Galbán CJ, Meyer CR, Johnson TD, Sundgren PC, Tsien CI, Lawrence TS, Junck L, Ross DJ, Rehemtulla A, Ross BD, Chenevert TL (2008) Functional diffusion map as an early imaging biomarker for high-grade glioma: correlation with conventional radiologic response and overall survival. J Clin Oncol 26:3387–3394CrossRefPubMedGoogle Scholar
  18. 18.
    Scott JN, Brasher PM, Sevick RJ, Rewcastle NB, Forsyth PA (2002) How often are nonenhancing supratentorial gliomas malignant? A population study. Neurology 59:947–949PubMedGoogle Scholar
  19. 19.
    Barker FG II, Chang SM, Huhn SL, Davis RL, Gutin PH, McDDermott MW, Wilson CB, Prados MD (1997) Age and the risk of anaplasia in magnetic resonance-nonenhancing supratentorial cerebral tumors. Cancer 80:936–941CrossRefPubMedGoogle Scholar
  20. 20.
    Ginsberg LE, Fuller GN, Hashmi M, Leeds NE, Schomer DF (1998) The significance of lack of MR contrast enhancement of supratentorial brain tumors in adults: histopathological evaluation of a series. Surg Neurol 49:436–440CrossRefPubMedGoogle Scholar
  21. 21.
    Galloway RLJ, Maciunas RJ, Failinger AL (1993) Factors affecting perceived tumor volumes in magnetic resonance imaging. Ann Biomed Eng 21:367–375CrossRefPubMedGoogle Scholar
  22. 22.
    Anderson C, Astrup J, Gyldensted C (1994) Quantification of peritumoural oedema and the effect of steroids using NMR-relaxation time imaging and blood-brain barrier analysis. Acta Neurochir Suppl (Wien) 60:413–415Google Scholar
  23. 23.
    Zaki HS, Jenkinson MD, Du Plessis DG, Smith T, Rainov NG (2004) Vanishing contrast enhancement in malignant glioma after corticosteroid treatment. Acta Neurochir (Wien) 146:841–845CrossRefGoogle Scholar
  24. 24.
    Zuniga RM, Torcuator R, Jain R, Anderson J, Doyle T, Ellika S, Schultz L, Mikkelsen T (2009) Efficacy, safety and patterns of response and recurrence in patients with recurrent high-grade gliomas treated with bevacizumab plus irinotecan. J Neurooncol 91:329–335CrossRefPubMedGoogle Scholar
  25. 25.
    Brant-Zawadski M, Norman D, Newton TH (1984) Magnetic resonance imaging of the brain: the optimal screening technique. Radiology 152:71–77Google Scholar
  26. 26.
    Byrne TN (1994) Imaging of gliomas. Semin Oncol 21:162–171PubMedGoogle Scholar
  27. 27.
    Husstedt HW, Sickert M, Köstler H, Haubitz B, Becker H (2000) Diagnostic value of the fast-FLAIR sequence in MR imaging of intracranial tumors. Eur Radiol 10:745–752CrossRefPubMedGoogle Scholar
  28. 28.
    Tsuchiya K, Mizutani Y, Hachiya J (1996) Preliminary evaluation of fluid-attenuated inversion-recovery MR in the diagnosis of intracranial tumors. AJNR Am J Neuroradiol 17:1081–1086PubMedGoogle Scholar
  29. 29.
    Essig M, Hawighorst H, Schoenberg SO, Engenhart-Cabillic R, Fuss M, Debus J, Zuna I, Knopp MV, van Kaick G (1998) Fast fluid-attenuated inversion-recovery (FLAIR) MRI in the assessment of intraaxial brain tumors. J Magn Reson Imaging 8:789–798CrossRefPubMedGoogle Scholar
  30. 30.
    Ellingson BM, Malkin MG, Rand SD, Hoyt A, Connelly J, Bedekar DP, Kurpad SN, Schmainda KM (2009) Comparison of cytotoxic and anti-angiogenic treatment responses using functional diffusion maps in FLAIR abnormal regions. Proc Intl Soc Mag Reson Med 17:1010Google Scholar
  31. 31.
    Ellingson BM, Malkin MG, Rand SD, Bedekar DP, Schmainda KM (2009) Functional diffusion maps applied to FLAIR abnormal areas are valuable for the clinical monitoring of recurrent brain tumors. Proc Intl Soc Mag Reson Med 17:285Google Scholar
  32. 32.
    Ellingson BM, Rand SD, Malkin MG, Schmainda KM (2010) Utility of functional diffusion maps to monitor a patient diagnosed with gliomatosis cerebri. J Neurooncol 97:419–423CrossRefPubMedGoogle Scholar
  33. 33.
    Cox RW, Jesmanowicz A (1999) Real-time 3D image registration for functional MRI. Magn Reson Med 42:1014–1018CrossRefPubMedGoogle Scholar
  34. 34.
    Ellingson BM, Malkin MG, Rand SD, Connelly JM, Quinsey C, LaViolette PS, Bedekar DP, Schmainda KM (2010) Validation of functional diffusion maps (fDMs) as a biomarker for human glioma cellularity. J Magn Reson Imaging 31:538–548CrossRefPubMedGoogle Scholar
  35. 35.
    Karnofsky DA, Burchenal JH (1949) The clinical evaluation of chemotherapeutic agents in cancer. In: MacLeod CM (ed) Evaluation of chemotherapeutic agents. Columbia University Press, New York, pp 191–205Google Scholar
  36. 36.
    Mor V, Laliberte L, Morris JN, Wiemann M (1984) The Karnofsky performance scale: an examination of its reliability and validity in a research setting. Cancer 53:2002–2007CrossRefPubMedGoogle Scholar
  37. 37.
    Macdonald DR, Cascino TL, Schold SC Jr, Cairncross JG (1990) Response criteria for phase II studies of supratentorial malignant glioma. J Clin Oncol 8:1277–1280PubMedGoogle Scholar
  38. 38.
    Pope WB, Kim HJ, Huo J, Alger J, Brown MS, Gjertson D, Sai V, Young JR, Tekchandani L, Cloughesy TF, Mischel PS, Lai A, Nghiemphu PL, Rahmanuddin S, Goldin J (2009) Recurrent glioblastoma multiforme: ADC histogram analysis predicts response to bevacizumab treatment. Radiology 252:182–189CrossRefPubMedGoogle Scholar
  39. 39.
    Ardekani BA, Guckemus S, Bachman A, Hoptman MJ, Wojtasek M, Nierenberg J (2005) Quantitative comparison of algorithms for inter-subject registration of 3D volumetric brain MRI scans. J Neurosci Methods 142:67–76CrossRefPubMedGoogle Scholar
  40. 40.
    Padhani AR, Liu G, Mu-Koh D, Chenevert TL, Thoeny HC, Takahara T, Dzik-Jurasz A, Ross BD, Van Cauteren M, Collins D, Hammoud DA, Rustin GJS, Taouli B, Choyke PL (2009) Diffusion-weighted magnetic resonance imaging as a cancer biomarker: consensus and recommendations. Neoplasia 11:102–125PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2010

Authors and Affiliations

  • Benjamin M. Ellingson
    • 1
    • 2
    • 4
  • Mark G. Malkin
    • 1
    • 3
    • 4
  • Scott D. Rand
    • 1
    • 2
  • Pete S. LaViolette
    • 1
    • 5
  • Jennifer M. Connelly
    • 1
    • 3
  • Wade M. Mueller
    • 1
    • 4
  • Kathleen M. Schmainda
    • 1
    • 2
    • 5
  1. 1.Translational Brain Tumor Research ProgramMedical College of WisconsinMilwaukeeUSA
  2. 2.Department of RadiologyMedical College of WisconsinMilwaukeeUSA
  3. 3.Department of NeurologyMedical College of WisconsinMilwaukeeUSA
  4. 4.Department of NeurosurgeryMedical College of WisconsinMilwaukeeUSA
  5. 5.Department of BiophysicsMedical College of WisconsinMilwaukeeUSA

Personalised recommendations