Journal of Neuro-Oncology

, Volume 95, Issue 1, pp 37–48 | Cite as

Estrogen increases survival in an orthotopic model of glioblastoma

  • Tara A. Barone
  • Justin W. Gorski
  • Steven J. Greenberg
  • Robert J. PlunkettEmail author
Laboratory Investigation - Human/animal tissue


Despite the male preponderance for developing glial tumors and a body of published literature that suggests a female gender advantage for long term survival in both human and animal studies, there have been relatively few rigorous investigations into the hormonal effects on glial tumor growth. In a previous study, we concluded that estrogen played a major role in the female survival bias seen in an intracerebral nude rat model of glioblastoma multiforme. Here we explore the potential therapeutic effect of exogenous estradiol delivery in nude rats with orthotopic glioblastoma tumors and examine the mechanism of action of estradiol on reducing tumor growth in this animal model. We administered estradiol, in several dosing regimens, to male, female and ovariectomized nude rats in a survival study. Brain sections, taken at various time points in tumor progression, were analyzed for estrogen receptor protein, proliferative index and apoptotic index. Estradiol increased survival of male, female and ovariectomized nude rats with intracerebral U87MG tumors, in a gender specific manner. The estradiol mediated effect occurred early in tumor progression, and appeared to be caused in-part by an increase in apoptotic activity. It remains unclear if estradiol’s effect is direct or indirect and if it is estrogen receptor mediated. Estradiol-based or adjunctive therapy may be beneficial in treating GBM and further study is clearly warranted.


Glioblastoma Estradiol Nude rat Gender Survival 



The authors wish to thank Phyllis Spence and Rachel Heim for excellent technical assistance and Agniezska Lis Ph.D for helpful suggestions.


  1. 1.
    Claus EB, Black PM (2006) Survival rates and patterns of care for patients diagnosed with supratentorial low-grade gliomas: data from the SEER program, 1973–2001. Cancer 106(6):1358–1363. doi: 10.1002/cncr.21733 CrossRefPubMedGoogle Scholar
  2. 2.
    Hirano H, Asakura T, Yokoyama S et al (1996) The prognostic factors in astrocytic tumors: analysis by the Kaplan–Meier method and the Weibull log-linear model. No Shinkei Geka 24:809–815 (in Japanese)PubMedGoogle Scholar
  3. 3.
    Plunkett R, Barone T, McCarthy B et al (1998) Influence of gender on survival of patients with glioma: analysis of the SEER database. J Neurooncol 39:272 AbstractGoogle Scholar
  4. 4.
    Roth JG, Elvidge AR (1960) Glioblastoma multiforme: a clinical survey. J Neurosurg 17:736–750CrossRefPubMedGoogle Scholar
  5. 5.
    Tseng MY, Tseng JH (2005) Survival analysis for adult glioma in England and Wales. J Formos Med Assoc 104(5):341–348PubMedGoogle Scholar
  6. 6.
    Hatch EE, Linet MS, Zhang J et al (2005) Reproductive and hormonal factors and risk of brain tumors in adult females. Int J Cancer 114(5):797–805. doi: 10.1002/ijc.20776 CrossRefPubMedGoogle Scholar
  7. 7.
    Huang K, Whelan EA, Ruder AM et al (2004) Reproductive factors and risk of glioma in women. Cancer Epidemiol Biomarkers Prev 13(10):1583–1588PubMedGoogle Scholar
  8. 8.
    Garman RH, Snellings WM (1986) Frequency, size and location of brain tumours in F-344 rats chronically exposed to ethylene oxide. Food Chem Toxicol 24:145–153. doi: 10.1016/0278-6915(86)90349-2 CrossRefPubMedGoogle Scholar
  9. 9.
    Gopinath C (1986) Spontaneous brain tumours in Sprague-Dawley rats. Food Chem Toxicol 24:113–120. doi: 10.1016/0278-6915(86)90345-5 CrossRefPubMedGoogle Scholar
  10. 10.
    Lee Y, Bullard DE, Humphrey PA et al (1988) Treatment of intracranial human xenographs with 131I-labeled anti-tenascin monoclonal antibody 81C6. Cancer Res 48:2904–2910PubMedGoogle Scholar
  11. 11.
    Verzat C, Delisle M-B, Courriere P et al (1990) Influence of host sex on the growth of a human glioblastoma cell line in athymic mice. Neuropathol Appl Neurobiol 16:141–151. doi: 10.1111/j.1365-2990.1990.tb00943.x CrossRefPubMedGoogle Scholar
  12. 12.
    Plunkett RJ, Lis A, Barone TA et al (1999) Hormonal effects on glioblastoma multiforme in the nude rat model. J Neurosurg 90:1072–1077CrossRefPubMedGoogle Scholar
  13. 13.
    Feigelson HS, Henderson BE (1996) Estrogens and breast cancer. Carcinogensis 17:2279–2284. doi: 10.1093/carcin/17.11.2279 CrossRefGoogle Scholar
  14. 14.
    Ito K, Utsunomiya H, Yaegashi N et al (2007) Biological roles of estrogen and progesterone in human endometrial carcinoma—new developments in potential endocrine therapy for endometrial cancer. Endocr J 54(5):667–679. doi: 10.1507/endocrj.KR-114 CrossRefPubMedGoogle Scholar
  15. 15.
    Korhonen K, Salminen T, Raitanen J et al (2006) Female predominance in meningiomas can not be explained by differences in progesterone, estrogen, or androgen receptor expression. J Neurooncol 80:1–7. doi: 10.1007/s11060-006-9146-9 CrossRefPubMedGoogle Scholar
  16. 16.
    Gibson CL, Gray LJ, Murphy SP et al (2006) Estrogens and experimental ischemic stroke: a systematic review. J Cereb Blood Flow Metab 26:1103–1113CrossRefPubMedGoogle Scholar
  17. 17.
    El-Etr M, Vukusic S, Gignoux L et al (2005) Steroid hormones in multiple sclerosis. J Neurol Sci 233:49–54. doi: 10.1016/j.jns.2005.03.004 CrossRefPubMedGoogle Scholar
  18. 18.
    Simpkins JW, Green PS, Gridley KE et al (1997) Role of estrogen replacement therapy in memory enhancement and the prevention of neuronal loss associated with Alzheimer’s disease. Am J Med 103:19S–25S. doi: 10.1016/S0002-9343(97)00260-X CrossRefPubMedGoogle Scholar
  19. 19.
    Rangonese P, D’Amelio M, Savettieri G (2006) Implications for estrogens in Parkinson’s disease: an epidemiological approach. Ann N Y Acad Sci 1089:373–382. doi: 10.1196/annals.1386.004 CrossRefGoogle Scholar
  20. 20.
    Paxinos G, Watson C (1998) The rat brain in stereotaxic coordinates, 4th edn. Academic Press, San DiegoGoogle Scholar
  21. 21.
    Blankenstein MA, Broerse JJ, de Vries JB et al (1977) The effect of subcutaneous administration of oestrogens on plasma oestrogen levels and tumor incidence in female rats. Eur J Cancer 13:1437–1443. doi: 10.1016/0014-2964(77)90158-X CrossRefPubMedGoogle Scholar
  22. 22.
    Goth MI, Lyons CE Jr, Ellwood MR et al (1996) Chronic estrogen treatment in male rats reveals mammosomatotropes and allows inhibition of prolactin secretion by somatostatin. Endocrinology 137:274–280. doi: 10.1210/en.137.1.274 CrossRefPubMedGoogle Scholar
  23. 23.
    Lundeen SG, Carver JM, McKean M-L et al (1997) Charaterization of the ovariectomized rat model for the evaluation of estrogen effects on plasma cholesterol levels. Endocrinology 138:1552–1558. doi: 10.1210/en.138.4.1552 CrossRefPubMedGoogle Scholar
  24. 24.
    Sumi C, Yokoro K, Matsushima R (1984) Effects of 17ß-estradiol and diethylstilbestrol on concurrent development of hepatic, mammary, and pituitary tumors in WF rats: evidence for differential effect on liver. J Natl Cancer Inst 73:1229–1234PubMedGoogle Scholar
  25. 25.
    Yague JG, Lavaque E, Carretero J et al (2004) Aromatase, the enzyme responsible for estrogen biosynthesis, is expressed by human and rat glioblastomas. Neurosci Lett 368(3):279–284. doi: 10.1016/j.neulet.2004.07.010 CrossRefPubMedGoogle Scholar
  26. 26.
    Morissette M, Levesque D (1990) A physiological dose of estradiol with progesterone affects striatum biogenic amines. Can J Physiol Pharmacol 68:1520–1526CrossRefPubMedGoogle Scholar
  27. 27.
    Rossouw JE, Anderson GL, Johnson KC et al (2002) Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results from the Women’s Health Initiative randomized controlled trial. JAMA 288(3):321–333. doi: 10.1001/jama.288.3.321 CrossRefPubMedGoogle Scholar
  28. 28.
    Zhu BT, Conney AH (1998) Functional role of estrogen metabolism in target cells: review and perspectives. Carcinogenesis 19:1–27. doi: 10.1093/carcin/19.1.1 CrossRefPubMedGoogle Scholar
  29. 29.
    Fishman J, Bradlow HL, Schneider J et al (1980) Radiometric analysis of biological oxidations in man: sex differences in estradiol metabolism. Proc Natl Acad Sci USA 77:4957–4960. doi: 10.1073/pnas.77.8.4957 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Maggs JL, Morgan P, Park BK (1992) The sexually differentiated metabolism of [6, 7-3H]17ß-oestradiol in rats: male-specific 15α-and male-selective 16α-hydroxylation and female-selective catechol formation. J Steroid Biochem Mol Biol 42:65–76. doi: 10.1016/0960-0760(92)90012-8 CrossRefPubMedGoogle Scholar
  31. 31.
    Morissette M, Garcia-Segura L-M, Belanger A et al (1992) Changes in rat striatal neuronal membrane morphology and steroid content during the estrous cycle. Neuroscience 49:893–902. doi: 10.1016/0306-4522(92)90365-9 CrossRefPubMedGoogle Scholar
  32. 32.
    Pardridge WM, Moeller TL, Mietus LJ, et al (1980) Blood-brain barrier transport and brain sequestration of steroid hormones. Am J Physiol 239 (Endocrinol Metab 2):E96–E102Google Scholar
  33. 33.
    Ball P, Haupt M, Knuppen R (1978) Comparative studies on the metabolism of oestradiol in the brain, the pituitary and the liver of the rat. Acta Endocrinol (Copenh) 87:1–11Google Scholar
  34. 34.
    Kaplan GP, Hartman BK, Creveling CR (1979) Immunohistochemical demonstration of catechol-O-methyltransferase in mammalian brain. Brain Res 167:241–250. doi: 10.1016/0006-8993(79)90819-9 CrossRefPubMedGoogle Scholar
  35. 35.
    Masuda M, Tsunoda M, Imai K (2003) High-performance liquid chromatography-fluorescent assay of catechol-O-methyltransferase activity in the brain. Anal Bioanal Chem 376(7):1069–1073. doi: 10.1007/s00216-003-2025-8 CrossRefPubMedGoogle Scholar
  36. 36.
    Redell JB, Dash PK (2006) Traumatic brain injury stimulates hippocampal catechol-O-methyltransferase expression in microglia. Neurosci Lett 413(1):36–41. doi: 10.1016/j.neulet.2006.11.060 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Helkamaa T, Reenila I, Tuominen RK et al (2007) Increased catechol-O-methyltransferase activity and protein expression in OX-42 positive cells in substantia nigra after lipopolysaccharide microinfusion. Neurochem Int 51(6–7):412–423. doi: 10.1016/j.neuint.2007.04.020 CrossRefPubMedGoogle Scholar
  38. 38.
    Lis A, Ciesielski MJ, Barone TA et al (2004) 2-methoxyestradiol inhibits proliferation of normal and neoplastic glial cells, and induces cell death, in vitro. Cancer Lett 213(1):57–65. doi: 10.1016/j.canlet.2004.04.021 CrossRefPubMedGoogle Scholar
  39. 39.
    Kang SH, Cho HT, Devi S et al (2006) Antitumor effect of 2-methoxyestradiol in a rat orthotopic brain tumor model. Cancer Res 66(24):11991–11997. doi: 10.1158/0008-5472.CAN-06-1320 CrossRefPubMedGoogle Scholar
  40. 40.
    Nagashima G, Suzuki R, Asai J et al (2002) Immunohistochemical analysis of reactive astrocytes around glioblastoma: an immunohistochemical study of postmortem glioblastoma cases. Clin Neurol Neurosurg 104(2):125–131. doi: 10.1016/S0303-8467(01)00197-4 CrossRefPubMedGoogle Scholar
  41. 41.
    Azcoitia I, Sierra A, Garcia-Segura LM (1999) Localization of estrogen receptor ß-immunoreactivity in astrocytes of the adult rat brain. Glia 26:260–267. doi: 10.1002/(SICI)1098-1136(199905)26:3<260::AID-GLIA7>3.0.CO;2-R CrossRefPubMedGoogle Scholar
  42. 42.
    Milner TA, McEwen BS, Hayashi S et al (2001) Ultrastructural evidence that hippocampal alpha estrogen receptors are located at extranuclear sites. J Comp Neurol 429(3):355–371. doi: 10.1002/1096-9861(20010115)429:3<355::AID-CNE1>3.0.CO;2-#CrossRefPubMedGoogle Scholar
  43. 43.
    Santagati S, Melcangi RC, Celotti F et al (1994) Estrogen receptor is expressed in different types of glial cells in culture. J Neurochem 63:2058–2064CrossRefPubMedGoogle Scholar
  44. 44.
    Dhandapani KM, Wade FM, Mahesh VB et al (2005) Astocyte-derived transforming growth factor-β mediates the neuroprotective effects of 17β-estradiol: involvement of nonclassical genomic signaling pathways. Endocrinology 146(6):2749–2759. doi: 10.1210/en.2005-0014 CrossRefPubMedGoogle Scholar
  45. 45.
    Pan JJ, Chang WJ, Barone TA et al (2006) Increased expression of TGF-β1 reduces tumor growth of human U-87 glioblastoma cells in vivo. Cancer Immunol Immunother 55(8):918–927. doi: 10.1007/s00262-005-0083-9 CrossRefPubMedGoogle Scholar
  46. 46.
    Johnson EA, Svetlov SI, Pike BR et al (2004) Cell-specific upregulation of survivin after experimental traumatic brain injury in rats. J Neurotrauma 21(9):1183–1195. doi: 10.1089/neu.2004.21.1183 CrossRefPubMedGoogle Scholar
  47. 47.
    Moggs JG, Murphy TC, Lim FL et al (2005) Anti-proliferative effect of estrogen in breast cancer cells that re-express ERalpha is mediated by abberant regulation of cell cycle genes. J Mol Endocrinol 34(2):535–551. doi: 10.1677/jme.1.01677 CrossRefPubMedGoogle Scholar
  48. 48.
    Nakayama Y, Sakamoto H, Satoh K et al (2000) Tamoxifen and gonadal steroids inhibit colon cancer growth in association with inhibition of thymidylate synthase, survivin and telomerase expression through estrogen receptor beta mediated system. Cancer Lett 161(1):63–71. doi: 10.1016/S0304-3835(00)00600-5 CrossRefPubMedGoogle Scholar
  49. 49.
    Le DM, Besson A, Fogg DK et al (2003) Exploitation of astrocytes by glioma cells to facilitate invasiveness: a mechanism involving matrix metalloproteinase-2 and the urokinase-type plasminogen activator-plasmin cascade. J Neurosci 23(10):4034–4043PubMedGoogle Scholar
  50. 50.
    Liu R, Wen Y, Perez E et al (2005) 17 beta-estradiol attenuates blood-brain barrier disruption induced by cerebral ischemia-reperfusion injury in female rats. Brain Res 1060(1–2):55–61. doi: 10.1016/j.brainres.2005.08.048 CrossRefPubMedGoogle Scholar
  51. 51.
    Puli S, Lai JCK, Bhushan A (2006) Inhibition of matrix degrading enzymes and invasion in human glioblastoma (U87MG) cells by isoflavones. J Neuro-onc 79:135–142. doi: 10.1007/s11060-006-9126-0 CrossRefGoogle Scholar
  52. 52.
    Graeber MB, Scheithauer BW, Kreutzberg GW (2002) Microglia in brain tumors. Glia 40:252–259. doi: 10.1002/glia.10147 CrossRefPubMedGoogle Scholar
  53. 53.
    Liu X, Fan XL, Zhao Y et al (2005) Estrogen provides neuroprotection against activated microglia-induced dopaminergic neuronal injury through both estrogen receptor-alpha and estrogen receptor-beta in microglia. J Neurosci Res 81(5):653–665. doi: 10.1002/jnr.20583 CrossRefPubMedGoogle Scholar
  54. 54.
    Vegeto E, Bonincontro C, Pollio G et al (2001) Estrogen prevents the lipopolysaccharide-induced inflammatory response in microglia. J Neurosci 21(6):1809–1818PubMedGoogle Scholar
  55. 55.
    Baker AE, Brautigam VM, Watters JJ (2004) Estrogen modulates microglial inflammatory mediator production via interactions with estrogen receptor β. Endocrinology 145(11):5021–5032. doi: 10.1210/en.2004-0619 CrossRefPubMedGoogle Scholar
  56. 56.
    Goswami S, Gupta A, Sharma SK (1998) Interleukin-6-mediated autocrine growth promotion in human glioblastoma multiforme cell line U87MG. J Neurochem 71:1837–1845CrossRefPubMedGoogle Scholar
  57. 57.
    Chang CY, Li MC, Liao SL et al (2005) Prognostic and clinical implications of IL-6 expression in glioblastoma multiforme. J Clin Neurosci 12(8):930–933. doi: 10.1016/j.jocn.2004.11.017 CrossRefPubMedGoogle Scholar
  58. 58.
    Samaras V, Piperi C, Korkolopoulou P et al (2007) Application of the ELISPOT method for comapartive analysis of interleukin (IL)-6 and IL-10 secretion in peripheral blood of patients with astroglial tumors. Mol Cell Biochem 304(1–2):343–351. doi: 10.1007/s11010-007-9517-3 CrossRefPubMedGoogle Scholar
  59. 59.
    Straub RH (2007) The complex role of estrogens in inflammation. Endocr Rev 28(5):521–574. doi: 10.1210/er.2007-0001 CrossRefPubMedGoogle Scholar
  60. 60.
    Yamini B, Yu X, Gillespie GY et al (2004) Transcriptional targeting of adenovirally delivered tumor necrosis factor α by temozolomide in experimental glioblastoma. Cancer Res 64:6381–6384. doi: 10.1158/0008-5472.CAN-04-2117 CrossRefPubMedGoogle Scholar
  61. 61.
    Davoust N, Vuaillat C, Androdias G et al (2008) From bone marrow to microglia: barriers and avenues. Trends Immunol 29(5):227–234. doi: 10.1016/ CrossRefPubMedGoogle Scholar
  62. 62.
    Vegeto E, Belcredito S, Etteri S et al (2003) Estrogen receptor-α mediates the brain anti-inflammatory activity of estradiol. Proc Natl Acad Sci USA 100(16):9614–9619. doi: 10.1073/pnas.1531957100 CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Vegeto E, Ghisletti S, Meda C et al (2004) Regulation of the lipopolysaccharide signal transduction pathway by 17β-estradiol in macrophage cells. J Steroid Biochem Mol Biol 91:59–66. doi: 10.1016/j.jsbmb.2004.02.004 CrossRefPubMedGoogle Scholar
  64. 64.
    Camphausen K, Purow B, Sproull M et al (2005) Influence of in vivo growth on human glioma cell line gene expression: convergent profiles under orthotopic conditions. Proc Natl Acad Sci USA 102(23):8287–8292. doi: 10.1073/pnas.0502887102 CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Batistatou A, Kyzas PA, Goussia A et al (2006) Estrogen receptor beta (ERβ) protein expression correlates with BAG-1 and prognosis in brain glial tumours. J Neuro-onc 77:17–23. doi: 10.1007/s11060-005-9005-0 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2009

Authors and Affiliations

  • Tara A. Barone
    • 1
  • Justin W. Gorski
    • 1
  • Steven J. Greenberg
    • 3
  • Robert J. Plunkett
    • 1
    • 2
    Email author
  1. 1.Department of NeurosurgeryRoswell Park Cancer InstituteBuffaloUSA
  2. 2.Department of NeurosurgeryState University of New York at BuffaloBuffaloUSA
  3. 3.Neurology Global Clinical DevelopmentEMD SeronoRocklandUSA

Personalised recommendations