Journal of Neuro-Oncology

, 94:333 | Cite as

‘Putting our heads together’: insights into genomic conservation between human and canine intracranial tumors

  • Rachael Thomas
  • Shannon E. Duke
  • Huixia J. Wang
  • Tessa E. Breen
  • Robert J. Higgins
  • Keith E. Linder
  • Peter Ellis
  • Cordelia F. Langford
  • Peter J. Dickinson
  • Natasha J. Olby
  • Matthew Breen
Laboratory Investigation - Human/animal tissue


Numerous attributes render the domestic dog a highly pertinent model for cancer-associated gene discovery. We performed microarray-based comparative genomic hybridization analysis of 60 spontaneous canine intracranial tumors to examine the degree to which dog and human patients exhibit aberrations of ancestrally related chromosome regions, consistent with a shared pathogenesis. Canine gliomas and meningiomas both demonstrated chromosome copy number aberrations (CNAs) that share evolutionarily conserved synteny with those previously reported in their human counterpart. Interestingly, however, genomic imbalances orthologous to some of the hallmark aberrations of human intracranial tumors, including chromosome 22/NF2 deletions in meningiomas and chromosome 1p/19q deletions in oligodendrogliomas, were not major events in the dog. Furthermore, and perhaps most significantly, we identified highly recurrent CNAs in canine intracranial tumors for which the human orthologue has been reported previously at low frequency but which have not, thus far, been associated intimately with the pathogenesis of the tumor. The presence of orthologous CNAs in canine and human intracranial cancers is strongly suggestive of their biological significance in tumor development and/or progression. Moreover, the limited genetic heterogenity within purebred dog populations, coupled with the contrasting organization of the dog and human karyotypes, offers tremendous opportunities for refining evolutionarily conserved regions of tumor-associated genomic imbalance that may harbor novel candidate genes involved in their pathogenesis. A comparative approach to the study of canine and human intracranial tumors may therefore provide new insights into their genetic etiology, towards development of more sophisticated molecular subclassification and tailored therapies in both species.


Comparative genomic hybridization Canine Brain tumor Chromosome Microarray 



We would like to acknowledge Pragna Mehta and the Veterinary Neurology and Pathology residents and clinicians from North Carolina State University and the University of California at Davis for assistance with tissue procurement. We thank Eric Seiser for assistance with data analysis. This work was supported by grants from the National Institutes of Health (NS051190) and the American Kennel Club Canine Health Foundation (CHF-403) awarded to MB and NJO. CFL and PE are supported by funds from the Wellcome Trust. HJW is supported by National Science Foundation Award (DMS-0706963). PD and RJH are supported by the Paul C and Borghild T Petersen Foundation.


  1. 1.
    Ries L, Melbert D, Krapcho M, Stinchcomb D, Howlader N, Horner M, Mariotto A, Miller B, Feuer E, Altekruse S, Lewis D, Clegg L, Eisner M, Reichman M, Edwards BK (2008) SEER cancer statistics review, 1975–2005. National Cancer Institute. Bethesda, MD., based on November 2007 SEER data submission, posted to the SEER web site
  2. 2.
    Soffietti R, Ruda R (2008) Neuro-oncology: new insights and advances in treatment. Lancet Neurol 7:14–16. doi: 10.1016/S1474-4422(07)70305-8 PubMedCrossRefGoogle Scholar
  3. 3.
    Collins VP (2004) Brain tumours: classification and genes. J Neurol Neurosurg Psychiatry 75(Suppl 2):ii2–ii11. doi: 10.1136/jnnp.2004.040337 Google Scholar
  4. 4.
    Koschny R, Koschny T, Froster UG, Krupp W, Zuber MA (2002) Comparative genomic hybridization in glioma: a meta-analysis of 509 cases. Cancer Genet Cytogenet 135:147–159. doi: 10.1016/S0165-4608(01)00650-1 PubMedCrossRefGoogle Scholar
  5. 5.
    van Tilborg AA, Al Allak B, Velthuizen SC, de Vries A, Kros JM, Avezaat CJ, de Klein A, Beverloo HB, Zwarthoff EC (2005) Chromosomal instability in meningiomas. J Neuropathol Exp Neurol 64:312–322PubMedGoogle Scholar
  6. 6.
    Puget S, Rutka J (2007) Malignant brain tumors: two steps forward. Clin Neurosurg 54:4–9PubMedGoogle Scholar
  7. 7.
    Kimmelman J, Nalbantoglu J (2007) Faithful companions: a proposal for neurooncology trials in pet dogs. Cancer Res 67:4541–4544. doi: 10.1158/0008-5472.CAN-06-3792 PubMedCrossRefGoogle Scholar
  8. 8.
    Dobson JM, Samuel S, Milstein H, Rogers K, Wood JL (2002) Canine neoplasia in the UK: estimates of incidence rates from a population of insured dogs. J Small Anim Pract 43:240–246. doi: 10.1111/j.1748-5827.2002.tb00066.x PubMedCrossRefGoogle Scholar
  9. 9.
    Koestner A, Higgins R (2002) Tumors of the nervous system. In: Meuten D (ed) Tumors in domestic animals. Blackwell Publishing, p 697Google Scholar
  10. 10.
    Kleihues P, Cavenee WK (2000) Tumors of the nervous system: pathology and genetics. World Health Organization Classification of Tumors. IARC Press, Lyon, pp 970Google Scholar
  11. 11.
    Kleihues P, Louis DN, Scheithauer BW, Rorke LB, Reifenberger G, Burger PC, Cavenee WK (2002) The WHO classification of tumors of the nervous system. J Neuropathol Exp Neurol 61:215–225 (discussion 226–219)Google Scholar
  12. 12.
    Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, Scheithauer BW, Kleihues P (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114:97–109. doi: 10.1007/s00401-007-0243-4 PubMedCrossRefGoogle Scholar
  13. 13.
    Candolfi M, Curtin JF, Nichols WS, Muhammad AG, King GD, Pluhar GE, McNiel EA, Ohlfest JR, Freese AB, Moore PF, Lerner J, Lowenstein PR, Castro MG (2007) Intracranial glioblastoma models in preclinical neuro-oncology: neuropathological characterization and tumor progression. J Neurooncol 85:133–148. doi: 10.1007/s11060-007-9400-9 PubMedCrossRefGoogle Scholar
  14. 14.
    Candolfi M, Pluhar GE, Kroeger K, Puntel M, Curtin J, Barcia C, Muhammad AK, Xiong W, Liu C, Mondkar S, Kuoy W, Kang T, McNeil EA, Freese AB, Ohlfest JR, Moore P, Palmer D, Ng P, Young JD, Lowenstein PR, Castro MG (2007) Optimization of adenoviral vector-mediated transgene expression in the canine brain in vivo, and in canine glioma cells in vitro. Neuro Oncol 9:245–258. doi: 10.1215/15228517-2007-012 PubMedCrossRefGoogle Scholar
  15. 15.
    Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, Dirks PB (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res 63:5821–5828PubMedGoogle Scholar
  16. 16.
    Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, Cusimano MD, Dirks PB (2004) Identification of human brain tumour initiating cells. Nature 432:396–401. doi: 10.1038/nature03128 PubMedCrossRefGoogle Scholar
  17. 17.
    Parker HG, Kim LV, Sutter NB, Carlson S, Lorentzen TD, Malek TB, Johnson GS, DeFrance HB, Ostrander EA, Kruglyak L (2004) Genetic structure of the purebred domestic dog. Science 304:1160–1164. doi: 10.1126/science.1097406 PubMedCrossRefGoogle Scholar
  18. 18.
    Summers B, Cummings J, de Lahunta A (1995) Tumors of the central nervous system. Veterinary neuropathology. Mosby, St LouisGoogle Scholar
  19. 19.
    Dickinson PJ, Keel MK, Higgins RJ, Koblik PD, LeCouteur RA, Naydan DK, Bollen AW, Vernau W (2000) Clinical and pathologic features of oligodendrogliomas in two cats. Vet Pathol 37:160–167. doi: 10.1354/vp.37-2-160 PubMedCrossRefGoogle Scholar
  20. 20.
    Thomas R, Duke SE, Karlsson EK, Evans A, Ellis P, Lindblad-Toh K, Langford CF, Breen M (2008) A genome assembly-integrated dog 1 Mb BAC microarray: a cytogenetic resource for canine cancer studies and comparative genomic analysis. Cytogenet Genome Res 122:110–121PubMedCrossRefGoogle Scholar
  21. 21.
    Thomas R, Duke SE, Bloom SK, Breen TE, Young AC, Feiste E, Seiser EL, Tsai PC, Langford CF, Ellis P, Karlsson EK, Lindblad-Toh K, Breen M (2007) A cytogenetically characterized, genome-anchored 10-Mb BAC set and CGH array for the domestic dog. J Hered 98:474–484. doi: 10.1093/jhered/esm053 PubMedCrossRefGoogle Scholar
  22. 22.
    Breen M, Bullerdiek J, Langford CF (1999) The DAPI banded karyotype of the domestic dog (Canis familiaris) generated using chromosome-specific paint probes. Chromosome Res 7:401–406. doi: 10.1023/A:1009224232134 PubMedCrossRefGoogle Scholar
  23. 23.
    Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, Haussler D (2002) The human genome browser at UCSC. Genome Res 12:996–1006PubMedGoogle Scholar
  24. 24.
    Jong K, Marchiori E, Meijer G, Vaart AV, Ylstra B (2004) Breakpoint identification and smoothing of array comparative genomic hybridization data. Bioinformatics 20:3636–3637. doi: 10.1093/bioinformatics/bth355 PubMedCrossRefGoogle Scholar
  25. 25.
    Breen M, Hitte C, Lorentzen TD, Thomas R, Cadieu E, Sabacan L, Scott A, Evanno G, Parker HG, Kirkness EF, Hudson R, Guyon R, Mahairas GG, Gelfenbeyn B, Fraser CM, Andre C, Galibert F, Ostrander EA (2004) An integrated 4249 marker FISH/RH map of the canine genome. BMC Genomics 5:65–75. doi: 10.1186/1471-2164-5-65 PubMedCrossRefGoogle Scholar
  26. 26.
    Snyder JM, Shofer FS, Van Winkle TJ, Massicotte C (2006) Canine intracranial primary neoplasia: 173 cases (1986–2003). J Vet Intern Med 20:669–675. doi: 10.1892/0891-6640(2006)20[669:CIPNC]2.0.CO;2 PubMedCrossRefGoogle Scholar
  27. 27.
    Stoica G, Kim HT, Hall DG, Coates JR (2004) Morphology, immunohistochemistry, and genetic alterations in dog astrocytomas. Vet Pathol 41:10–19. doi: 10.1354/vp.41-1-10 PubMedCrossRefGoogle Scholar
  28. 28.
    Sturges BK, Dickinson PJ, Bollen AW, Koblik PD, Kass PH, Kortz GD, Vernau KM, Knipe MF, Lecouteur RA, Higgins RJ (2008) Magnetic resonance imaging and histological classification of intracranial meningiomas in 112 dogs. J Vet Intern Med 22:586–595. doi: 10.1111/j.1939-1676.2008.00042.x PubMedCrossRefGoogle Scholar
  29. 29.
    Breen M, Modiano JF (2008) Evolutionarily conserved cytogenetic changes in hematological malignancies of dogs and humans—man and his best friend share more than companionship. Chromosome Res 16:145–154. doi: 10.1007/s10577-007-1212-4 PubMedCrossRefGoogle Scholar
  30. 30.
    Thomas R, Scott A, Langford CF, Fosmire SP, Jubala CM, Lorentzen TD, Hitte C, Karlsson EK, Kirkness E, Ostrander EA, Galibert F, Lindblad-Toh K, Modiano JF, Breen M (2005) Construction of a 2-Mb resolution BAC microarray for CGH analysis of canine tumors. Genome Res 15:1831–1837. doi: 10.1101/gr.3825705 PubMedCrossRefGoogle Scholar
  31. 31.
    Thomas R, Smith KC, Ostrander EA, Galibert F, Breen M (2003) Chromosome aberrations in canine multicentric lymphomas detected with comparative genomic hybridisation and a panel of single locus probes. Br J Cancer 89:1530–1537. doi: 10.1038/sj.bjc.6601275 PubMedCrossRefGoogle Scholar
  32. 32.
    Modiano JF, Breen M, Burnett RC, Parker HG, Inusah S, Thomas R, Avery PR, Lindblad-Toh K, Ostrander EA, Cutter GC, Avery AC (2005) Distinct B-cell and T-cell lymphoproliferative disease prevalence among dog breeds indicates heritable risk. Cancer Res 65:5654–5661. doi: 10.1158/0008-5472.CAN-04-4613 PubMedCrossRefGoogle Scholar
  33. 33.
    Thomson SA, Kennerly E, Olby N, Mickelson JR, Hoffmann DE, Dickinson PJ, Gibson G, Breen M (2005) Microarray analysis of differentially expressed genes of primary tumors in the canine central nervous system. Vet Pathol 42:550–558. doi: 10.1354/vp.42-5-550 PubMedCrossRefGoogle Scholar
  34. 34.
    Arslantas A, Artan S, Oner U, Durmaz R, Muslumanoglu H, Atasoy MA, Basaran N, Tel E (2002) Comparative genomic hybridization analysis of genomic alterations in benign, atypical and anaplastic meningiomas. Acta Neurol Belg 102:53–62PubMedGoogle Scholar
  35. 35.
    Weber RG, Bostrom J, Wolter M, Baudis M, Collins VP, Reifenberger G, Lichter P (1997) Analysis of genomic alterations in benign, atypical, and anaplastic meningiomas: toward a genetic model of meningioma progression. Proc Natl Acad Sci USA 94:14719–14724. doi: 10.1073/pnas.94.26.14719 PubMedCrossRefGoogle Scholar
  36. 36.
    Mark J, Levan G, Mitelman F (1972) Identification by fluorescence of the G chromosome lost in human meningomas. Hereditas 71:163–168PubMedGoogle Scholar
  37. 37.
    Sawyer JR, Husain M, Pravdenkova S, Krisht A, Al-Mefty O (2000) A role for telomeric and centromeric instability in the progression of chromosome aberrations in meningioma patients. Cancer 88:440–453. doi: 10.1002/(SICI)1097-0142(20000115)88:2<440::AID-CNCR27>3.0.CO;2-5 PubMedCrossRefGoogle Scholar
  38. 38.
    Al-Mefty O, Kadri PA, Pravdenkova S, Sawyer JR, Stangeby C, Husain M (2004) Malignant progression in meningioma: documentation of a series and analysis of cytogenetic findings. J Neurosurg 101:210–218PubMedCrossRefGoogle Scholar
  39. 39.
    Ishino S, Hashimoto N, Fushiki S, Date K, Mori T, Fujimoto M, Nakagawa Y, Ueda S, Abe T, Inazawa J (1998) Loss of material from chromosome arm 1p during malignant progression of meningioma revealed by fluorescent in situ hybridization. Cancer 83:360–366. doi: 10.1002/(SICI)1097-0142(19980715)83:2<360::AID-CNCR21>3.0.CO;2-Q PubMedCrossRefGoogle Scholar
  40. 40.
    Caren H, Fransson S, Ejeskar K, Kogner P, Martinsson T (2007) Genetic and epigenetic changes in the common 1p36 deletion in neuroblastoma tumours. Br J Cancer 97:1416–1424. doi: 10.1038/sj.bjc.6604032 PubMedCrossRefGoogle Scholar
  41. 41.
    Okawa ER, Gotoh T, Manne J, Igarashi J, Fujita T, Silverman KA, Xhao H, Mosse YP, White PS, Brodeur GM (2008) Expression and sequence analysis of candidates for the 1p36.31 tumor suppressor gene deleted in neuroblastomas. Oncogene 27:803–810. doi: 10.1038/sj.onc.1210675 PubMedCrossRefGoogle Scholar
  42. 42.
    Tamimi Y, Ziebart K, Desaulniers N, Dietrich K, Grundy P (2007) Identification of a minimal region of loss on the short arm of chromosome 1 in Wilms tumor. Genes Chromosomes Cancer 46:327–335. doi: 10.1002/gcc.20413 PubMedCrossRefGoogle Scholar
  43. 43.
    Flordal Thelander E, Ichimura K, Collins VP, Walsh SH, Barbany G, Hagberg A, Laurell A, Rosenquist R, Larsson C, Lagercrantz S (2007) Detailed assessment of copy number alterations revealing homozygous deletions in 1p and 13q in mantle cell lymphoma. Leuk Res 31:1219–1230. doi: 10.1016/j.leukres.2006.10.022 PubMedCrossRefGoogle Scholar
  44. 44.
    Zahn S, Sievers S, Alemazkour K, Orb S, Harms D, Schulz WA, Calaminus G, Gobel U, Schneider DT (2006) Imbalances of chromosome arm 1p in pediatric and adult germ cell tumors are caused by true allelic loss: a combined comparative genomic hybridization and microsatellite analysis. Genes Chromosomes Cancer 45:995–1006. doi: 10.1002/gcc.20363 PubMedCrossRefGoogle Scholar
  45. 45.
    Idbaih A, Marie Y, Pierron G, Brennetot C, Hoang-Xuan K, Kujas M, Mokhtari K, Sanson M, Lejeune J, Aurias A, Delattre O, Delattre JY (2005) Two types of chromosome 1p losses with opposite significance in gliomas. Ann Neurol 58:483–487. doi: 10.1002/ana.20607 PubMedCrossRefGoogle Scholar
  46. 46.
    Kilic E, Naus NC, van Gils W, Klaver CC, van Til ME, Verbiest MM, Stijnen T, Mooy CM, Paridaens D, Beverloo HB, Luyten GP, de Klein A (2005) Concurrent loss of chromosome arm 1p and chromosome 3 predicts a decreased disease-free survival in uveal melanoma patients. Invest Ophthalmol Vis Sci 46:2253–2257. doi: 10.1167/iovs.04-1460 PubMedCrossRefGoogle Scholar
  47. 47.
    Giannini C, Scheithauer BW, Weaver AL, Burger PC, Kros JM, Mork S, Graeber MB, Bauserman S, Buckner JC, Burton J, Riepe R, Tazelaar HD, Nascimento AG, Crotty T, Keeney GL, Pernicone P, Altermatt H (2001) Oligodendrogliomas: reproducibility and prognostic value of histologic diagnosis and grading. J Neuropathol Exp Neurol 60:248–262PubMedGoogle Scholar
  48. 48.
    Trost D, Ehrler M, Fimmers R, Felsberg J, Sabel MC, Kirsch L, Schramm J, Wiestler OD, Reifenberger G, Weber RG (2007) Identification of genomic aberrations associated with shorter overall survival in patients with oligodendroglial tumors. Int J Cancer 120:2368–2376. doi: 10.1002/ijc.22574 PubMedCrossRefGoogle Scholar
  49. 49.
    Dickinson PJ, Roberts B, Higgins R, Leutenegger C, Bollen AW, Kass PH, LeCouteur RA (2006) Expression of receptor tyrosine kinases VEGFR-1 (FLT-1), VEGFR-2 (KDR), EGFR-1, PDGFRa and c-Met in canine primary brain tumours. Vet Comp Oncol 4:132–140. doi: 10.1111/j.1476-5829.2006.00101.x CrossRefPubMedGoogle Scholar
  50. 50.
    Lipsitz D, Higgins RJ, Kortz GD, Dickinson PJ, Bollen AW, Naydan DK, Le Couteur RA (2003) Glioblastoma multiforme: clinical findings, magnetic resonance imaging, and pathology in five dogs. Vet Pathol 40:659–669. doi: 10.1354/vp.40-6-659 PubMedCrossRefGoogle Scholar
  51. 51.
    Jenkins RB, Blair H, Ballman KV, Giannini C, Arusell RM, Law M, Flynn H, Passe S, Felten S, Brown PD, Shaw EG, Buckner JC (2006) A t(1;19)(q10;p10) mediates the combined deletions of 1p and 19q and predicts a better prognosis of patients with oligodendroglioma. Cancer Res 66:9852–9861. doi: 10.1158/0008-5472.CAN-06-1796 PubMedCrossRefGoogle Scholar
  52. 52.
    Iwamoto FM, Nicolardi L, Demopoulos A, Barbashina V, Salazar P, Rosenblum M, Hormigo A (2008) Clinical relevance of 1p and 19q deletion for patients with WHO grade 2 and 3 gliomas. J Neurooncol 88:293–298. doi: 10.1007/s11060-008-9563-z PubMedCrossRefGoogle Scholar
  53. 53.
    Cairncross JG, Macdonald DR (1990) Oligodendroglioma: a new chemosensitive tumor. J Clin Oncol 8:2090–2091PubMedGoogle Scholar
  54. 54.
    Smith JS, Perry A, Borell TJ, Lee HK, O’Fallon J, Hosek SM, Kimmel D, Yates A, Burger PC, Scheithauer BW, Jenkins RB (2000) Alterations of chromosome arms 1p and 19q as predictors of survival in oligodendrogliomas, astrocytomas, and mixed oligoastrocytomas. J Clin Oncol 18:636–645PubMedGoogle Scholar
  55. 55.
    Ino Y, Betensky RA, Zlatescu MC, Sasaki H, Macdonald DR, Stemmer-Rachamimov AO, Ramsay DA, Cairncross JG, Louis DN (2001) Molecular subtypes of anaplastic oligodendroglioma: implications for patient management at diagnosis. Clin Cancer Res 7:839–845PubMedGoogle Scholar
  56. 56.
    van den Bent MJ, Looijenga LH, Langenberg K, Dinjens W, Graveland W, Uytdewilligen L, Sillevis Smitt PA, Jenkins RB, Kros JM (2003) Chromosomal anomalies in oligodendroglial tumors are correlated with clinical features. Cancer 97:1276–1284. doi: 10.1002/cncr.11187 PubMedCrossRefGoogle Scholar
  57. 57.
    Felsberg J, Erkwoh A, Sabel MC, Kirsch L, Fimmers R, Blaschke B, Schlegel U, Schramm J, Wiestler OD, Reifenberger G (2004) Oligodendroglial tumors: refinement of candidate regions on chromosome arm 1p and correlation of 1p/19q status with survival. Brain Pathol 14:121–130PubMedGoogle Scholar
  58. 58.
    Lindblad-Toh K, Wade CM, Mikkelsen TS, Karlsson EK, Jaffe DB, Kamal M, Clamp M, Chang JL, Kulbokas EJ III, Zody MC, Mauceli E, Xie X, Breen M, Wayne RK, Ostrander EA, Ponting CP, Galibert F, Smith DR, DeJong PJ, Kirkness E, Alvarez P, Biagi T, Brockman W, Butler J, Chin CW, Cook A, Cuff J, Daly MJ, DeCaprio D, Gnerre S, Grabherr M, Kellis M, Kleber M, Bardeleben C, Goodstadt L, Heger A, Hitte C, Kim L, Koepfli KP, Parker HG, Pollinger JP, Searle SM, Sutter NB, Thomas R, Webber C, Baldwin J, Abebe A, Abouelleil A, Aftuck L, Ait-Zahra M, Aldredge T, Allen N, An P, Anderson S, Antoine C, Arachchi H, Aslam A, Ayotte L, Bachantsang P, Barry A, Bayul T, Benamara M, Berlin A, Bessette D, Blitshteyn B, Bloom T, Blye J, Boguslavskiy L, Bonnet C, Boukhgalter B, Brown A, Cahill P, Calixte N, Camarata J, Cheshatsang Y, Chu J, Citroen M, Collymore A, Cooke P, Dawoe T, Daza R, Decktor K, DeGray S, Dhargay N, Dooley K, Dooley K, Dorje P, Dorjee K, Dorris L, Duffey N, Dupes A, Egbiremolen O, Elong R, Falk J, Farina A, Faro S, Ferguson D, Ferreira P, Fisher S, FitzGerald M, Foley K, Foley C, Franke A, Friedrich D, Gage D, Garber M, Gearin G, Giannoukos G, Goode T, Goyette A, Graham J, Grandbois E, Gyaltsen K, Hafez N, Hagopian D, Hagos B, Hall J, Healy C, Hegarty R, Honan T, Horn A, Houde N, Hughes L, Hunnicutt L, Husby M, Jester B, Jones C, Kamat A, Kanga B, Kells C, Khazanovich D, Kieu AC, Kisner P, Kumar M, Lance K, Landers T, Lara M, Lee W, Leger JP, Lennon N, Leuper L, LeVine S, Liu J, Liu X, Lokyitsang Y, Lokyitsang T, Lui A, Macdonald J, Major J, Marabella R, Maru K, Matthews C, McDonough S, Mehta T, Meldrim J, Melnikov A, Meneus L, Mihalev A, Mihova T, Miller K, Mittelman R, Mlenga V, Mulrain L, Munson G, Navidi A, Naylor J, Nguyen T, Nguyen N, Nguyen C, Nguyen T, Nicol R, Norbu N, Norbu C, Novod N, Nyima T, Olandt P, O’Neill B, O’Neill K, Osman S, Oyono L, Patti C, Perrin D, Phunkhang P, Pierre F, Priest M, Rachupka A, Raghuraman S, Rameau R, Ray V, Raymond C, Rege F, Rise C, Rogers J, Rogov P, Sahalie J, Settipalli S, Sharpe T, Shea T, Sheehan M, Sherpa N, Shi J, Shih D, Sloan J, Smith C, Sparrow T, Stalker J, Stange-Thomann N, Stavropoulos S, Stone C, Stone S, Sykes S, Tchuinga P, Tenzing P, Tesfaye S, Thoulutsang D, Thoulutsang Y, Topham K, Topping I, Tsamla T, Vassiliev H, Venkataraman V, Vo A, Wangchuk T, Wangdi T, Weiand M, Wilkinson J, Wilson A, Yadav S, Yang S, Yang X, Young G, Yu Q, Zainoun J, Zembek L, Zimmer A, Lander ES (2005) Genome sequence, comparative analysis and haplotype structure of the domestic dog. Nature 438:803–819. doi: 10.1038/nature04338 Google Scholar
  59. 59.
    Breen M (2008) Canine cytogenetics—from band to basepair. Cytogenet Genome Res 120:50–60. doi: 10.1159/000118740 PubMedCrossRefGoogle Scholar
  60. 60.
    Idbaih A, Marie Y, Lucchesi C, Pierron G, Manie E, Raynal V, Mosseri V, Hoang-Xuan K, Kujas M, Brito I, Mokhtari K, Sanson M, Barillot E, Aurias A, Delattre JY, Delattre O (2008) BAC array CGH distinguishes mutually exclusive alterations that define clinicogenetic subtypes of gliomas. Int J Cancer 122:1778–1786. doi: 10.1002/ijc.23270 PubMedCrossRefGoogle Scholar
  61. 61.
    Lo KC, Rossi MR, LaDuca J, Hicks DG, Turpaz Y, Hawthorn L, Cowell JK (2007) Candidate glioblastoma development gene identification using concordance between copy number abnormalities and gene expression level changes. Genes Chromosomes Cancer 46:875–894. doi: 10.1002/gcc.20474 PubMedCrossRefGoogle Scholar
  62. 62.
    Ruano Y, Mollejo M, Ribalta T, Fiano C, Camacho FI, Gomez E, de Lope AR, Hernandez-Moneo JL, Martinez P, Melendez B (2006) Identification of novel candidate target genes in amplicons of Glioblastoma multiforme tumors detected by expression and CGH microarray profiling. Mol Cancer 5:39. doi: 10.1186/1476-4598-5-39 PubMedCrossRefGoogle Scholar
  63. 63.
    Beroukhim R, Getz G, Nghiemphu L, Barretina J, Hsueh T, Linhart D, Vivanco I, Lee JC, Huang JH, Alexander S, Du J, Kau T, Thomas RK, Shah K, Soto H, Perner S, Prensner J, Debiasi RM, Demichelis F, Hatton C, Rubin MA, Garraway LA, Nelson SF, Liau L, Mischel PS, Cloughesy TF, Meyerson M, Golub TA, Lander ES, Mellinghoff IK, Sellers WR (2007) Assessing the significance of chromosomal aberrations in cancer: methodology and application to glioma. Proc Natl Acad Sci USA 104:20007–20012. doi: 10.1073/pnas.0710052104 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2009

Authors and Affiliations

  • Rachael Thomas
    • 1
    • 2
  • Shannon E. Duke
    • 1
  • Huixia J. Wang
    • 3
  • Tessa E. Breen
    • 4
  • Robert J. Higgins
    • 5
  • Keith E. Linder
    • 2
    • 6
  • Peter Ellis
    • 7
  • Cordelia F. Langford
    • 7
  • Peter J. Dickinson
    • 8
  • Natasha J. Olby
    • 2
    • 4
  • Matthew Breen
    • 1
    • 2
    • 9
  1. 1.Department of Molecular Biomedical Sciences, College of Veterinary MedicineNorth Carolina State UniversityRaleighUSA
  2. 2.Center for Comparative Medicine and Translational ResearchNorth Carolina State UniversityRaleighUSA
  3. 3.Department of Statistics, College of Agriculture and Life SciencesNorth Carolina State UniversityRaleighUSA
  4. 4.Department of Clinical Sciences, College of Veterinary MedicineNorth Carolina State UniversityRaleighUSA
  5. 5.Department of Pathology, Microbiology and Immunology, School of Veterinary MedicineUniversity of California-DavisDavisUSA
  6. 6.Department of Population Health and Pathobiology, College of Veterinary MedicineNorth Carolina State UniversityRaleighUSA
  7. 7.Microarray FacilityThe Wellcome Trust Sanger InstituteCambridgeUK
  8. 8.Department of Surgical and Radiological Sciences, School of Veterinary MedicineUniversity of California-DavisDavisUSA
  9. 9.Cancer Genetics ProgramUNC Lineberger Comprehensive Cancer CenterChapel HillUSA

Personalised recommendations