Advertisement

Journal of Neuro-Oncology

, Volume 92, Issue 3, pp 297–306 | Cite as

Emerging functions of microRNAs in glioblastoma

  • Sean Lawler
  • E. Antonio Chiocca
Topic Review

Abstract

Distinct patterns of microRNA expression have been observed in glioblastomas. The functional significance of some of these microRNAs is beginning to emerge. This data indicates that microRNAs play roles in multiple hallmark biological characteristics of glioblastoma, including cell proliferation, invasion, glioma stem cell behavior, and angiogenesis. Research in this area is quickly gathering pace and is illuminating important aspects of the disease that may ultimately lead to novel therapeutic interventions, as well as diagnostic and prognostic tools for brain tumors.

Keywords

MicroRNA Glioblastoma 

Notes

Acknowledgements

The authors would like to acknowledge the National Institutes of Health, the Esther L. Dardinger Endowment for Neuro-oncology and Neurosciences and The Thomas Jeffrey Hayden Foundation for their support.

References

  1. 1.
    Furnari FB, Fenton T, Bachoo RM, Mukasa A, Stommel JM, Stegh A, Hahn WC, Ligon KL, Louis DN, Brennan C, Chin L, DePinho RA, Cavenee WK (2007) Malignant astrocytic glioma: genetics, biology, and paths to treatment. Genes Dev 21:2683–2710. doi: 10.1101/gad.1596707 PubMedCrossRefGoogle Scholar
  2. 2.
    Muldoon LL, Soussain C, Jahnke K, Johanson C, Siegal T, Smith QR, Hall WA, Hynynen K, Senter PD, Peereboom DM, Neuwelt EA (2007) Chemotherapy delivery issues in central nervous system malignancy: a reality check. J Clin Oncol 25:2295–2305. doi: 10.1200/JCO.2006.09.9861 PubMedCrossRefGoogle Scholar
  3. 3.
    Deeken JF, Löscher W (2007) The blood-brain barrier and cancer: transporters, treatment, and Trojan horses. Clin Cancer Res 13:1663–1674. doi: 10.1158/1078-0432.CCR-06-2854 PubMedCrossRefGoogle Scholar
  4. 4.
    Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, Cusimano MD, Dirks PB (2004) Identification of human brain tumour initiating cells. Nature 432:396–401. doi: 10.1038/nature03128 PubMedCrossRefGoogle Scholar
  5. 5.
    Galli R, Binda E, Orfanelli U, Cipelletti B, Gritti A, De Vitis S, Fiocco R, Foroni C, Dimeco F, Vescovi A (2004) Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res 64:7011–7021. doi: 10.1158/0008-5472.CAN-04-1364 PubMedCrossRefGoogle Scholar
  6. 6.
    Maher EA, Brennan C, Wen PY, Durso L, Ligon KL, Richardson A, Khatry D, Feng B, Sinha R, Louis DN, Quackenbush J, Black PM, Chin L, DePinho RA (2006) Marked genomic differences characterize primary and secondary glioblastoma subtypes and identify two distinct molecular and clinical secondary glioblastoma entities. Cancer Res 66:11502–11513. doi: 10.1158/0008-5472.CAN-06-2072 PubMedCrossRefGoogle Scholar
  7. 7.
    Phillips HS, Kharbanda S, Chen R, Forrest WF, Soriano RH, Wu TD, Misra A, Nigro JM, Colman H, Soroceanu L, Williams PM, Modrusan Z, Feuerstein BG, Aldape K (2006) Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell 9:157–173. doi: 10.1016/j.ccr.2006.02.019 PubMedCrossRefGoogle Scholar
  8. 8.
    Cancer Genome Atlas Research Network (2008) Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455:1061–1068. doi: 10.1038/nature07385 CrossRefGoogle Scholar
  9. 9.
    Parsons DW, Jones S, Zhang X, Lin JC, Leary RJ, Angenendt P, Mankoo P, Carter H, Siu IM, Gallia GL, Olivi A, McLendon R, Rasheed BA, Keir S, Nikolskaya T, Nikolsky Y, Busam DA, Tekleab H, Diaz LA Jr, Hartigan J, Smith DR, Strausberg RL, Marie SK, Shinjo SM, Yan H, Riggins GJ, Bigner DD, Karchin R, Papadopoulos N, Parmigiani G, Vogelstein B, Velculescu VE, Kinzler KW (2008) An integrated genomic analysis of human glioblastoma multiforme. Science 321:1807–1812. doi: 10.1126/science.1164382 PubMedCrossRefGoogle Scholar
  10. 10.
    Ambros V (2008) The evolution of our thinking about microRNAs. Nat Med 14:1036–1040. doi: 10.1038/nm1008-1036 PubMedCrossRefGoogle Scholar
  11. 11.
    Ambros V (2004) The functions of animal microRNAs. Nature 431:350–355. doi: 10.1038/nature02871 PubMedCrossRefGoogle Scholar
  12. 12.
    Amaral PP, Dinger ME, Mercer TR, Mattick JS (2008) The eukaryotic genome as an RNA machine. Science 319:1787–1789. doi: 10.1126/science.1155472 PubMedCrossRefGoogle Scholar
  13. 13.
    Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854. doi: 10.1016/0092-8674(93)90529-Y PubMedCrossRefGoogle Scholar
  14. 14.
    Wightman B, Ha I, Ruvkun G (1993) Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75:855–862. doi: 10.1016/0092-8674(93)90530-4 PubMedCrossRefGoogle Scholar
  15. 15.
    Griffiths-Jones S (2006) miRBase: the microRNA sequence database. Methods Mol Biol 342:129–138PubMedGoogle Scholar
  16. 16.
    Rodriguez A, Griffiths-Jones S, Ashurst JL, Bradley A (2004) Identification of mammalian microRNA host genes and transcription units. Genome Res 14:1902–1910. doi: 10.1101/gr.2722704 PubMedCrossRefGoogle Scholar
  17. 17.
    Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH, Kim VN (2004) MicroRNA genes are transcribed by RNA polymerase II. EMBO J 23:4054–4060Google Scholar
  18. 18.
    Thomson JM, Newman M, Parker JS, Morin-Kensicki EM, Wright T, Hammond SM (2006) Extensive post-transcriptional regulation of microRNAs and its implications for cancer. Genes Dev 20:2202–2207. doi: 10.1101/gad.1444406 PubMedCrossRefGoogle Scholar
  19. 19.
    Yi R, Qin Y, Macara IG, Cullen BR (2003) Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev 17:3011–3016. doi: 10.1101/gad.1158803 PubMedCrossRefGoogle Scholar
  20. 20.
    Ketting RF, Fischer SE, Bernstein E, Sijen T, Hannon GJ, Plasterk RH (2001) Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Genes Dev 15:2654–2659. doi: 10.1101/gad.927801 PubMedCrossRefGoogle Scholar
  21. 21.
    Hutvagner G, McLachlan J, Pasquinelli AE, Bálint E, Tuschl T, Zamore PD (2001) A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 293:834–838. doi: 10.1126/science.1062961 PubMedCrossRefGoogle Scholar
  22. 22.
    Diederichs S, Haber DA (2007) Dual role for argonautes in microRNA processing and posttranscriptional regulation of microRNA expression. Cell 131:1097–1108. doi: 10.1016/j.cell.2007.10.032 PubMedCrossRefGoogle Scholar
  23. 23.
    Vella MC, Choi EY, Lin SY, Reinert K, Slack FJ (2004) The C. elegans microRNA let-7 binds to imperfect let-7 complementary sites from the lin-41 3′UTR. Genes Dev 15:132–137. doi: 10.1101/gad.1165404 CrossRefGoogle Scholar
  24. 24.
    Grimson A, Farh KK, Johnston WK, Garrett-Engele P, Lim LP, Bartel DP (2007) MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell 27:91–105. doi: 10.1016/j.molcel.2007.06.017 PubMedCrossRefGoogle Scholar
  25. 25.
    Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J, Bartel DP, Linsley PS, Johnson JM (2005) Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433:769–773. doi: 10.1038/nature03315 PubMedCrossRefGoogle Scholar
  26. 26.
    Doench JG, Sharp PA (2004) Specificity of microRNA target selection in translational repression. Genes Dev 18:504–511. doi: 10.1101/gad.1184404 PubMedCrossRefGoogle Scholar
  27. 27.
    Wu L, Fan J, Belasco JG (2006) MicroRNAs direct rapid deadenylation of mRNA. Proc Natl Acad Sci USA 103:4034–4039. doi: 10.1073/pnas.0510928103 PubMedCrossRefGoogle Scholar
  28. 28.
    Chendrimada TP, Finn KJ, Ji X, Baillat D, Gregory RI, Liebhaber SA, Pasquinelli AE, Shiekhattar R (2007) MicroRNA silencing through RISC recruitment of eIF6. Nature 447:823–828. doi: 10.1038/nature05841 PubMedCrossRefGoogle Scholar
  29. 29.
    Selbach M, Schwanhäusser B, Thierfelder N, Fang Z, Khanin R, Rajewsky N (2008) Widespread changes in protein synthesis induced by microRNAs. Nature 455:58–63. doi: 10.1038/nature07228 PubMedCrossRefGoogle Scholar
  30. 30.
    Vasudevan S, Tong Y, Steitz JA (2007) Switching from repression to activation: microRNAs can upregulate translation. Science 318:1931–1934. doi: 10.1126/science.1149460 PubMedCrossRefGoogle Scholar
  31. 31.
    Tay Y, Zhang J, Thomson AM, Lim B, Rigoutsos I (2008) MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. Nature 455:1124–1128. doi: 10.1038/nature07299 PubMedCrossRefGoogle Scholar
  32. 32.
    Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F, Visone R, Iorio M, Roldo C, Ferracin M, Prueitt RL, Yanaihara N, Lanza G, Scarpa A, Vecchione A, Negrini M, Harris CC, Croce CM (2006) A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA 103:2257–2261. doi: 10.1073/pnas.0510565103 PubMedCrossRefGoogle Scholar
  33. 33.
    Calin GA, Ferracin M, Cimmino A, Di Leva G, Shimizu M, Wojcik SE, Iorio MV, Visone R, Sever NI, Fabbri M, Iuliano R, Palumbo T, Pichiorri F, Roldo C, Garzon R, Sevignani C, Rassenti L, Alder H, Volinia S, Liu CG, Kipps TJ, Negrini M, Croce CM (2005) A microRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J Med 353:1793–1801. doi: 10.1056/NEJMoa050995 PubMedCrossRefGoogle Scholar
  34. 34.
    Esquela-Kerscher A, Slack FJ (2006) Oncomirs—microRNAs with a role in cancer. Nat Rev Cancer 6:259–269. doi: 10.1038/nrc1840 PubMedCrossRefGoogle Scholar
  35. 35.
    He L, Thomson JM, Hemann MT, Hernando-Monge E, Mu D, Goodson S, Powers S, Cordon-Cardo C, Lowe SW, Hannon GJ, Hammond SM (2005) A microRNA polycistron as a potential human oncogene. Nature 435:828–833. doi: 10.1038/nature03552 PubMedCrossRefGoogle Scholar
  36. 36.
    Dews M, Homayouni A, Yu D, Murphy D, Sevignani C, Wentzel E, Furth EE, Lee WM, Enders GH, Mendell JT, Thomas-Tikhonenko A (2006) Augmentation of tumor angiogenesis by a Myc-activated microRNA cluster. Nat Genet 38:1060–1065. doi: 10.1038/ng1855 PubMedCrossRefGoogle Scholar
  37. 37.
    O’Connell RM, Rao DS, Chaudhuri AA, Boldin MP, Taganov KD, Nicoll J, Paquette RL, Baltimore D (2008) Sustained expression of microRNA-155 in hematopoietic stem cells causes a myeloproliferative disorder. J Exp Med 205:585–594. doi: 10.1084/jem.20072108 PubMedCrossRefGoogle Scholar
  38. 38.
    Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, Alder H, Rattan S, Keating M, Rai K, Rassenti L, Kipps T, Negrini M, Bullrich F, Croce CM (2002) Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 99:15524–15529. doi: 10.1073/pnas.242606799 PubMedCrossRefGoogle Scholar
  39. 39.
    Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M, Wojcik SE, Aqeilan RI, Zupo S, Dono M, Rassenti L, Alder H, Volinia S, Liu CG, Kipps TJ, Negrini M, Croce CM (2005) miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci USA 102:13944–13949. doi: 10.1073/pnas.0506654102 PubMedCrossRefGoogle Scholar
  40. 40.
    Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, Cheng A, Labourier E, Reinert KL, Brown D, Slack FJ (2005) RAS is regulated by the let-7 microRNA family. Cell 120:635–647. doi: 10.1016/j.cell.2005.01.014 PubMedCrossRefGoogle Scholar
  41. 41.
    Lee EJ, Gusev Y, Jiang J, Nuovo GJ, Lerner MR, Frankel WL, Morgan DL, Postier RG, Brackett DJ, Schmittgen TD (2007) Expression profiling identifies microRNA signature in pancreatic cancer. Int J Cancer 120:1046–1054. doi: 10.1002/ijc.22394 PubMedCrossRefGoogle Scholar
  42. 42.
    Ma L, Teruya-Feldstein J, Weinberg RA (2007) Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature 449:682–688. doi: 10.1038/nature06174 PubMedCrossRefGoogle Scholar
  43. 43.
    Hua Z, Lv Q, Ye W, Wong CK, Cai G, Gu D, Ji Y, Zhao C, Wang J, Yang BB, Zhang Y (2006) MiRNA-directed regulation of VEGF and other angiogenic factors under hypoxia. PLoS One 1:e116. doi: 10.1371/journal.pone.0000116 PubMedCrossRefGoogle Scholar
  44. 44.
    Esquela-Kerscher A, Trang P, Wiggins JF, Patrawala L, Cheng A, Ford L, Weidhaas JB, Brown D, Bader AG, Slack FJ (2008) The let-7 microRNA reduces tumor growth in mouse models of lung cancer. Cell Cycle 7:759–764PubMedGoogle Scholar
  45. 45.
    Weiler J, Hunziker J, Hall J (2006) Anti-miRNA oligonucleotides (AMOs): ammunition to target miRNAs implicated in human disease? Gene Ther 13:496–502. doi: 10.1038/sj.gt.3302654 PubMedCrossRefGoogle Scholar
  46. 46.
    Ciafrè SA, Galardi S, Mangiola A, Ferracin M, Liu CG, Sabatino G, Negrini M, Maira G, Croce CM, Farace MG (2005) Extensive modulation of a set of microRNAs in primary glioblastoma. Biochem Biophys Res Commun 334:1351–1358. doi: 10.1016/j.bbrc.2005.07.030 PubMedCrossRefGoogle Scholar
  47. 47.
    Chan JA, Krichevsky AM, Kosik KS (2005) MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res 65:6029–6033. doi: 10.1158/0008-5472.CAN-05-0137 PubMedCrossRefGoogle Scholar
  48. 48.
    Silber J, Lim DA, Petritsch C, Persson AI, Maunakea AK, Yu M, Vandenberg SR, Ginzinger DG, James CD, Costello JF, Bergers G, Weiss WA, Alvarez-Buylla A, Hodgson JG (2008) miR-124 and miR-137 inhibit proliferation of glioblastoma multiforme cells and induce differentiation of brain tumor stem cells. BMC Med 6:14. doi: 10.1186/1741-7015-6-14 PubMedCrossRefGoogle Scholar
  49. 49.
    Godlewski J, Nowicki MO, Bronisz A, Williams S, Otsuki A, Nuovo G, Raychaudhury A, Newton HB, Chiocca EA, Lawler S (2008) Targeting of the Bmi-1 oncogene/stem cell renewal factor by microRNA-128 inhibits glioma proliferation and self-renewal. Cancer Res 68:9125–9130. doi: 10.1158/0008-5472.CAN-08-2629 PubMedCrossRefGoogle Scholar
  50. 50.
    Meng F, Henson R, Wehbe-Janek H, Ghoshal K, Jacob ST, Patel T (2007) MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology 133:647–658. doi: 10.1053/j.gastro.2007.05.022 PubMedCrossRefGoogle Scholar
  51. 51.
    Si ML, Zhu S, Wu H, Lu Z, Wu F, Mo YY (2007) miR-21-Mediated tumor growth. Oncogene 26:2799–2803. doi: 10.1038/sj.onc.1210083 PubMedCrossRefGoogle Scholar
  52. 52.
    Corsten MF, Miranda R, Kasmieh R, Krichevsky AM, Weissleder R, Shah K (2007) MicroRNA-21 knockdown disrupts glioma growth in vivo and displays synergistic cytotoxicity with neural precursor cell delivered S-TRAIL in human gliomas. Cancer Res 67:8994–9000. doi: 10.1158/0008-5472.CAN-07-1045 PubMedCrossRefGoogle Scholar
  53. 53.
    Chen Y, Liu W, Chao T, Zhang Y, Yan X, Gong Y, Qiang B, Yuan J, Sun M, Peng X (2008) MicroRNA-21 down-regulates the expression of tumor suppressor PDCD4 in human glioblastoma cell T98G. Cancer Lett 272:197–205. doi: 10.1016/j.canlet.2008.06.034 PubMedCrossRefGoogle Scholar
  54. 54.
    Zhu S, Si ML, Wu H, Mo YY (2007) MicroRNA-21 targets the tumor suppressor gene tropomyosin 1 (TPM1). J Biol Chem 282:14328–14336. doi: 10.1074/jbc.M611393200 PubMedCrossRefGoogle Scholar
  55. 55.
    Papagiannakopoulos T, Shapiro A, Kosik KS (2008) MicroRNA-21 targets a network of key tumor-suppressive pathways in glioblastoma cells. Cancer Res 68:8164–8172. doi: 10.1158/0008-5472.CAN-08-1305 PubMedCrossRefGoogle Scholar
  56. 56.
    Gabriely G, Wurdinger T, Kesari S, Esau CC, Burchard J, Linsley PS, Krichevsky AM (2008) MicroRNA 21 promotes glioma invasion by targeting matrix metalloproteinase regulators. Mol Cell Biol 28:5369–5380. doi: 10.1128/MCB.00479-08 PubMedCrossRefGoogle Scholar
  57. 57.
    Kefas B, Godlewski J, Comeau L, Li Y, Abounader R, Hawkinson M, Lee J, Fine H, Chiocca EA, Lawler S, Purow B (2008) microRNA-7 Inhibits the epidermal growth factor receptor and the Akt pathway and is down-regulated in glioblastoma. Cancer Res 68:3566–3572. doi: 10.1158/0008-5472.CAN-07-6639 PubMedCrossRefGoogle Scholar
  58. 58.
    Krichevsky AM, King KS, Donahue CP, Khrapko K, Kosik KS (2003) A microRNA array reveals extensive regulation of microRNAs during brain development. RNA 9:1274–1281. doi: 10.1261/rna.5980303 PubMedCrossRefGoogle Scholar
  59. 59.
    Visvanathan J, Lee S, Lee B, Lee JW, Lee SK (2007) The microRNA miR-124 antagonizes the anti-neural REST/SCP1 pathway during embryonic CNS development. Genes Dev 21:744–749. doi: 10.1101/gad.1519107 PubMedCrossRefGoogle Scholar
  60. 60.
    Makeyev EV, Zhang J, Carrasco MA, Maniatis T (2007) The microRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing. Mol Cell 27:435–448. doi: 10.1016/j.molcel.2007.07.015 PubMedCrossRefGoogle Scholar
  61. 61.
    Bruggeman SW, Hulsman D, Tanger E, Buckle T, Blom M, Zevenhoven J, van Tellingen O, van Lohuizen M (2007) Bmi1 controls tumor development in an Ink4a/Arf-independent manner in a mouse model for glioma. Cancer Cell 12:328–341. doi: 10.1016/j.ccr.2007.08.032 PubMedCrossRefGoogle Scholar
  62. 62.
    Molofsky AV, Pardal R, Iwashita T, Park IK, Clarke MF, Morrison SJ (2003) Bmi-1 dependence distinguishes neural stem cell self-renewal from progenitor proliferation. Nature 425:962–967. doi: 10.1038/nature02060 PubMedCrossRefGoogle Scholar
  63. 63.
    Smirnova L, Gräfe A, Seiler A, Schumacher S, Nitsch R, Wulczyn FG (2005) Regulation of miRNA expression during neural cell specification. Eur J Neurosci 21:1469–1477. doi: 10.1111/j.1460-9568.2005.03978.x PubMedCrossRefGoogle Scholar
  64. 64.
    Weiss GJ, Bemis LT, Nakajima E, Sugita M, Birks DK, Robinson WA, Varella-Garcia M, Bunn PA Jr, Haney J, Helfrich BA, Kato H, Hirsch FR, Franklin WA (2008) EGFR regulation by microRNA in lung cancer: correlation with clinical response and survival to gefitinib and EGFR expression in cell lines. Ann Oncol 19:1053–1059. doi: 10.1093/annonc/mdn006 PubMedCrossRefGoogle Scholar
  65. 65.
    Zhang Y, Chao T, Li R, Liu W, Chen Y, Yan X, Gong Y, Yin B, Liu W, Qiang B, Zhao J, Yuan J, Peng X (2008) MicroRNA-128 inhibits glioma cells proliferation by targeting transcription factor E2F3a. J Mol Med 87(1):43–51Google Scholar
  66. 66.
    Vredenburgh JJ, Desjardins A, Herndon JEII, Marcello J, Reardon DA, Quinn JA, Rich JN, Sathornsumetee S, Gururangan S, Sampson J, Wagner M, Bailey L, Bigner DD, Friedman AH, Friedman HS (2007) Bevacizumab plus irinotecan in recurrent glioblastoma multiforme. J Clin Oncol 25:4722–4729. doi: 10.1200/JCO.2007.12.2440 PubMedCrossRefGoogle Scholar
  67. 67.
    Würdinger T, Tannous BA, Saydam O, Skog J, Grau S, Soutschek J, Weissleder R, Breakefield XO, Krichevsky AM (2008) miR-296 Regulates growth factor receptor overexpression in angiogenic endothelial cells. Cancer Cell 14:382–393. doi: 10.1016/j.ccr.2008.10.005 PubMedCrossRefGoogle Scholar
  68. 68.
    Lawler SE, Peruzzi PP, Chiocca EA (2006) Genetic strategies for brain tumor therapy. Cancer Gene Ther 13:225–233. doi: 10.1038/sj.cgt.7700886 Google Scholar
  69. 69.
    Krützfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M, Stoffel M (2005) Silencing of microRNAs in vivo with ‘antagomirs’. Nature 438:685–689. doi: 10.1038/nature04303 PubMedCrossRefGoogle Scholar
  70. 70.
    Blower PE, Chung JH, Verducci JS, Lin S, Park JK, Dai Z, Liu CG, Schmittgen TD, Reinhold WC, Croce CM, Weinstein JN, Sadee W (2008) MicroRNAs modulate the chemosensitivity of tumor cells. Mol Cancer Ther 7:1–9. doi: 10.1158/1535-7163.MCT-07-0573 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2009

Authors and Affiliations

  1. 1.Dardinger Laboratory for Neuro-oncology and Neurosciences, Department of Neurological SurgeryThe Ohio State University Medical Center and James Comprehensive Cancer CenterColumbusUSA

Personalised recommendations