Journal of Neuro-Oncology

, Volume 94, Issue 1, pp 63–68 | Cite as

Initial experience with bevacizumab treatment for biopsy confirmed cerebral radiation necrosis

  • Roy TorcuatorEmail author
  • Richard Zuniga
  • Yedathore S. Mohan
  • Jack Rock
  • Thomas Doyle
  • Joseph Anderson
  • Jorge Gutierrez
  • Samuel Ryu
  • Rajan Jain
  • Mark Rosenblum
  • Tom Mikkelsen
Clinical Study - Patient Study


Background Cerebral radiation necrosis is a serious complication of radiation treatment for brain tumors. Therapeutic options include corticosteroids, anticoagulation and hyperbaric oxygen with limited efficacy. Bevacizumab, an antibody against VEGF had been reported to reduce edema in patients with suspected radiation necrosis. We retrospectively reviewed 6 patients with biopsy proven cerebral radiation necrosis treated with bevacizumab between 2006 and 2008. Results Interval MRI follow-up demonstrated radiographic response in all patients with an average reduction of 79% for the post gadolinium studies and 49% for the FLAIR images. The initial partial radiographic response was noted for up to a mean follow-up time of 5.9 months (6 weeks to 18 months). Conclusion Bevacizumab appears to produce radiographic response and clinical benefits in the treatment of patients with cerebral radionecrosis.


Bevacizumab Cerebral Radiation necrosis Biopsy 


  1. 1.
    Giglio P, Gilbert MR (2003) Cerebral radiation necrosis. Neurology 9(4):180–188. doi: 10.1097/01.nrl.0000080951.78533.c4 CrossRefGoogle Scholar
  2. 2.
    Cross N, Glantz M (2003) Neurologic complications of radiation therapy. Neurol Clin N Am 21(1):249–277Google Scholar
  3. 3.
    Gonzales J, Kumar AJ, Conrad CA, Levin VA (2007) Effect of bevacizumab on radiation necrosis of the brain. Int J Radiat Oncol Biol Phys 67(2):323–326. doi: 10.1016/j.ijrobp.2006.10.010 Google Scholar
  4. 4.
    Brandes A, Tosoni A, Spagnolli F, Frezza G, Leonardi M, Calbucci F, Franceschi E (2008) Disease progression after concomitant radiochemotherapy treatment: pitfalls in neurooncology. Neuro-oncol 10(3):361–367. doi: 10.1215/15228517-2008-008 PubMedCrossRefGoogle Scholar
  5. 5.
    Ricci P, Karis J, Heiserman J, Fram EK, Bice AN, Drayer BP (1998) Differentiating recurrent tumor from radiation necrosis: time for re-evaluation of positron emission tomography? AJNR Am J Neuroradiol 19(3):407–413PubMedGoogle Scholar
  6. 6.
    McPherson C, Warnick R (2004) Results of contemporary surgical management of radiation necrosis using frameless stereotaxis and intraoperative magnetic resonance imaging. J Neurooncol 68(1):41–47. doi: 10.1023/B:NEON.0000024744.16031.e9 PubMedCrossRefGoogle Scholar
  7. 7.
    Chuba P, Aronin P, Bhambhani K, Eichenhorn M, Zamarano L, Cianci P, Mulbauer M, Porter AT, Fontanesi J (1997) Hyperbaric oxygen therapy for radiation induced brain injury in children. Cancer 80(10):2005–2012. doi: 10.1002/(SICI)1097-0142(19971115)80:10<2005::AID-CNCR19>3.0.CO;2-0 PubMedCrossRefGoogle Scholar
  8. 8.
    Leber KA, Eder HG, Kovac H, Anegg U, Pendl G (1998) Treatment of cerebral radionecrosis by hyperbaric oxygen therapy. Stereotact Funct Neurosurg 70(suppl 1):229–236. doi: 10.1159/000056426 PubMedCrossRefGoogle Scholar
  9. 9.
    Glantz MJ, Burger PC, Friedman AH, Radtke RA, Massey EW, Schold SC Jr (1994) Treatment of radiation-induced nervous system injury with heparin and warfarin. Neurology 44(11):2020–2027PubMedGoogle Scholar
  10. 10.
    Macdonald DR, Cascino TL, Schold SC Jr, Cairncross JG (1990) Response criteria for phase II studies of supratentorial malignant glioma. J Clin Oncol 8:1277–1280PubMedGoogle Scholar
  11. 11.
    Corn BW, Yousem DM, Scott CB, Rotman M, Asbell SO, Nelson DF, Martin L, Curran WJ Jr (1994) White matter changes are correlated significantly with radiation dose Observations from a randomized dose-escalation trial for malignant glioma (Radiation Therapy Oncology Group 83-02). Cancer 74(10):2828–2835. doi: 10.1002/1097-0142(19941115)74:10<2828::AID-CNCR2820741014>3.0.CO;2-K PubMedCrossRefGoogle Scholar
  12. 12.
    Levin VA, Yung WK, Bruner J, Kyritsis A, Leeds N, Gleason MJ, Hess KR, Meyers CA, Ictech SA, Chang E, Maor MH (2002) Phase II study of accelerated fractionation radiation therapy with carboplatin followed by PCV chemotherapy for the treatment of anaplastic gliomas. Int J Radiat Oncol Biol Phys 53(1):58–66. doi: 10.1016/S0360-3016(01)02819-X PubMedGoogle Scholar
  13. 13.
    Jain R, Scarpace L, Ellika S, Schultz LR, Rock JP, Rosenblum ML, Patel SC, Lee TY, Mikkelsen T (2007) First-pass perfusion computed tomography: initial experience in differentiating recurrent brain tumors from radiation effects and radiation necrosis. Neurosurgery 61(4):778–787PubMedCrossRefGoogle Scholar
  14. 14.
    Ruben JD, Dally M, Bailey M, Smith R, McLean CA, Fedele P (2006) Cerebral radiation necrosis: incidence, outcomes, and risk factors with emphasis on radiation parameters and chemotherapy. Int J Radiat Oncol Biol Phys 65(2):499–508. doi: 10.1016/j.ijrobp.2005.12.002 PubMedGoogle Scholar
  15. 15.
    Peterson K, Clark HB, Hall WA, Truwit CL (1995) Multifocal enhancing magnetic resonance imaging lesions following cranial irradiation. Ann Neurol 38(2):237–244. doi: 10.1002/ana.410380217 PubMedCrossRefGoogle Scholar
  16. 16.
    Glantz MJ, Choy H, Kearns CM, Cole BF, Mills P, Zuhowski EG, Saris S, Rhodes CH, Stopa E, Egorin MJ (1996) Phase I study of weekly outpatient paclitaxel and concurrent cranial irradiation in adults with astrocytomas. J Clin Oncol 14(2):600–609PubMedGoogle Scholar
  17. 17.
    Chamberlain MC, Glantz MJ, Chalmers L, Van Horn A, Sloan AE (2007) Early necrosis following concurrent Temodar and radiotherapy in patients with glioblastoma. J Neurooncol 82:81–83. doi: 10.1007/s11060-006-9241-y PubMedCrossRefGoogle Scholar
  18. 18.
    Kumar AJ, Leeds NE, Fuller GN, Van Tassel P, Maor MH, Sawaya RE, Levin VA (2000) Malignant gliomas: MR imaging spectrum of radiation therapy- and chemotherapy-induced necrosis of the brain after treatment. Radiology 217(2):377–384PubMedGoogle Scholar
  19. 19.
    Cheng KM, Chan CM, Fu YT, Ho LC, Cheung FC, Law CK (2001) Acute hemorrhage in late radiation necrosis of the temporal lobe: report of five cases and review of the literature. J Neurooncol 51(2):143–150. doi: 10.1023/A:1010631112015 PubMedCrossRefGoogle Scholar
  20. 20.
    Kim JH, Chung YG, Kim CY, Kim HK, Lee HK (2004) Upregulation of VEGF and FGF2 in normal rat brain after experimental intraoperative radiation therapy. J Korean Med Sci 19(6):879–886PubMedCrossRefGoogle Scholar
  21. 21.
    Li Y-Q, Ballinger JR, Nordal RA, Su ZF, Wong CS (2001) Hypoxia in radiation-induced blood-spinal cord barrier breakdown. Cancer Res 61:3348–3354PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2009

Authors and Affiliations

  • Roy Torcuator
    • 1
    Email author
  • Richard Zuniga
    • 1
  • Yedathore S. Mohan
    • 1
  • Jack Rock
    • 1
  • Thomas Doyle
    • 2
  • Joseph Anderson
    • 2
  • Jorge Gutierrez
    • 3
  • Samuel Ryu
    • 4
  • Rajan Jain
    • 5
  • Mark Rosenblum
    • 1
  • Tom Mikkelsen
    • 1
  1. 1.Hermelin Brain Tumor Center, Department of NeurosurgeryHenry Ford HospitalDetroitUSA
  2. 2.Department of Medical OncologyHenry Ford HospitalDetroitUSA
  3. 3.Department of PathologyHenry Ford HospitalDetroitUSA
  4. 4.Department of Radiation OncologyHenry Ford HospitalDetroitUSA
  5. 5.Department of Neuro-RadiologyHenry Ford HospitalDetroitUSA

Personalised recommendations