Advertisement

Journal of Neuro-Oncology

, Volume 98, Issue 3, pp 427–430 | Cite as

Bevacizumab fails to treat temporal paraganglioma: discussion and case illustration

  • Hamidreza Aliabadi
  • James J. Vredenburgh
  • Richard G. Everson
  • Annick Desjardins
  • Henry S. Friedman
  • Roger E. McLendon
  • Debara L. Tucci
  • John H. SampsonEmail author
Case Report

Abstract

Temporal paragangliomas are highly vascular tumors treated primarily by surgical resection. However, surgery to remove these tumors is associated with significant morbidity, including cranial nerve dysfunction. Interestingly, these tumors have been shown to express vascular endothelial growth factor (VEGF). A variety of tumors expressing VEGF and the VEGF receptor have been shown to reduce in size and vascularity when treated with the VEGF-specific antibody, bevacizumab (Avastin®). We hypothesized that paragangliomas may be treated noninvasively with bevacizumab, either as a primary treatment or as a useful adjuvant to surgical resection or radiation. Thus, our aim was to evaluate the effects of bevacizumab on this patient’s paraganglioma. A 36-year-old female presented to us with a 3 month history of positional dizziness, light-headedness, and left ear pulsatile tinnitus and hearing loss. She was found to have a temporal paraganglioma (glomus jugulare tumor) on imaging. Histopathology confirmed significant staining for VEGF. This patient was treated with bevacizumab prior to surgical treatment; radiographic imaging at 3 months, however, showed no significant response. We discuss possible reasons for treatment failure.

Keywords

Bevacizumab Glomus tumors Glomus jugulare Temporal paraganglioma 

References

  1. 1.
    Heth J (2004) The basic science of glomus jugulare tumors. Neurosurg Focus 17(2):E2CrossRefPubMedGoogle Scholar
  2. 2.
    Mariman EC et al (1993) Analysis of a second family with hereditary non-chromaffin paragangliomas locates the underlying gene at the proximal region of chromosome 11q. Hum Genet 91(4):357–361CrossRefPubMedGoogle Scholar
  3. 3.
    Lack EE et al (1977) Paragangliomas of the head and neck region: a clinical study of 69 patients. Cancer 39(2):397–409CrossRefPubMedGoogle Scholar
  4. 4.
    Jackson CG (2001) Glomus tympanicum and glomus jugulare tumors. Otolaryngol Clin North Am 34(5):941–970 viiCrossRefPubMedGoogle Scholar
  5. 5.
    Mertens WC, Grignon DJ, Romano W (1993) Malignant paraganglioma with skeletal metastases and spinal cord compression: response and palliation with chemotherapy. Clin Oncol (R Coll Radiol) 5(2):126–128Google Scholar
  6. 6.
    Patel SR, Winchester DJ, Benjamin RS (1995) A 15-year experience with chemotherapy of patients with paraganglioma. Cancer 76(8):1476–1480CrossRefPubMedGoogle Scholar
  7. 7.
    Ferrara N et al (2004) Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nat Rev Drug Discov 3(5):391–400CrossRefPubMedGoogle Scholar
  8. 8.
    Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285(21):1182–1186PubMedCrossRefGoogle Scholar
  9. 9.
    Favier J et al (2002) Angiogenesis and vascular architecture in pheochromocytomas: distinctive traits in malignant tumors. Am J Pathol 161(4):1235–1246PubMedGoogle Scholar
  10. 10.
    Takekoshi K et al (2004) Expression of vascular endothelial growth factor (VEGF) and its cognate receptors in human pheochromocytomas. Life Sci 74(7):863–871CrossRefPubMedGoogle Scholar
  11. 11.
    Shibuya M (2006) Differential roles of vascular endothelial growth factor receptor-1 and receptor-2 in angiogenesis. J Biochem Mol Biol 39(5):469–478PubMedGoogle Scholar
  12. 12.
    Tonra JR, Hicklin DJ (2007) Targeting the vascular endothelial growth factor pathway in the treatment of human malignancy. Immunol Invest 36(1):3–23CrossRefPubMedGoogle Scholar
  13. 13.
    Salmenkivi K et al (2003) VEGF in 105 pheochromocytomas: enhanced expression correlates with malignant outcome. Apmis 111(4):458–464CrossRefPubMedGoogle Scholar
  14. 14.
    Ranieri G et al (2006) Vascular endothelial growth factor (VEGF) as a target of bevacizumab in cancer: from the biology to the clinic. Curr Med Chem 13(16):1845–1857CrossRefPubMedGoogle Scholar
  15. 15.
    Zielke A et al (2002) VEGF-mediated angiogenesis of human pheochromocytomas is associated to malignancy and inhibited by anti-VEGF antibodies in experimental tumors. Surgery 132(6):1056–1063 discussion 1063CrossRefPubMedGoogle Scholar
  16. 16.
    Dvorak HF (2002) Vascular permeability factor/vascular endothelial growth factor: a critical cytokine in tumor angiogenesis and a potential target for diagnosis and therapy. J Clin Oncol 20(21):4368–4380CrossRefPubMedGoogle Scholar
  17. 17.
    Senan S, Smit EF (2007) Design of clinical trials of radiation combined with antiangiogenic therapy. Oncologist 12(4):465–477CrossRefPubMedGoogle Scholar
  18. 18.
    Hurwitz H et al (2004) Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 350(23):2335–2342CrossRefPubMedGoogle Scholar
  19. 19.
    Kabbinavar FF et al (2005) Addition of bevacizumab to bolus fluorouracil and leucovorin in first-line metastatic colorectal cancer: results of a randomized phase II trial. J Clin Oncol 23(16):3697–3705CrossRefPubMedGoogle Scholar
  20. 20.
    Shih T, Lindley C (2006) Bevacizumab: an angiogenesis inhibitor for the treatment of solid malignancies. Clin Ther 28(11):1779–1802CrossRefPubMedGoogle Scholar
  21. 21.
    Jain RK et al (2007) Angiogenesis in brain tumours. Nat Rev Neurosci 8(8):610–622CrossRefPubMedGoogle Scholar
  22. 22.
    Wang Y et al (2004) Biological activity of bevacizumab, a humanized anti-VEGF antibody in vitro. Angiogenesis 7(4):335–345CrossRefPubMedGoogle Scholar
  23. 23.
    Shinohara ET, Maity A (2009) Increasing sensitivity to radiotherapy and chemotherapy by using novel biological agents that alter the tumor microenvironment. Curr Mol Med 9(9):1034–1045CrossRefPubMedGoogle Scholar
  24. 24.
    Willett CG et al (2004) Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer. Nat Med 10(2):145–147CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2009

Authors and Affiliations

  • Hamidreza Aliabadi
    • 1
  • James J. Vredenburgh
    • 2
  • Richard G. Everson
    • 1
  • Annick Desjardins
    • 2
  • Henry S. Friedman
    • 3
    • 4
  • Roger E. McLendon
    • 5
  • Debara L. Tucci
    • 6
  • John H. Sampson
    • 1
    Email author
  1. 1.Department of Surgery, Division of NeurosurgeryDuke University Medical CenterDurhamUSA
  2. 2.Department of Medicine, Division of Medical OncologyDuke University Medical CenterDurhamUSA
  3. 3.Department of Pediatrics, The Preston Robert Tisch Brain Tumor CenterDuke University Medical CenterDurhamUSA
  4. 4.Department of Surgery, The Preston Robert Tisch Brain Tumor CenterDuke University Medical CenterDurhamUSA
  5. 5.Department of PathologyDuke University Medical CenterDurhamUSA
  6. 6.Department of Surgery, Division of Otolaryngology Head and Neck SurgeryDuke University Medical CenterDurhamUSA

Personalised recommendations