Journal of Neuro-Oncology

, Volume 97, Issue 2, pp 217–224 | Cite as

Amplification and overexpression of KIT, PDGFRA, and VEGFR2 in medulloblastomas and primitive neuroectodermal tumors

  • Tea Blom
  • Annariikka Roselli
  • Valtteri Häyry
  • Olli Tynninen
  • Kirmo Wartiovaara
  • Miikka Korja
  • Kristiina Nordfors
  • Hannu Haapasalo
  • Nina N. Nupponen
Laboratory Investigation - Human/Animal Tissue


Medulloblastomas (MB) and primitive neuroectodermal tumors (PNET) are the most common malignant brain tumors in children. These two tumor types are histologically similar, but have different genetic backgrounds and clinical outcomes. Other brain tumors, such as gliomas, frequently have coamplification and overexpression of receptor tyrosine kinases KIT, platelet-derived growth factor receptor alpha (PDGFRA), and vascular endothelial growth factor receptor 2 (VEGFR2). We investigated protein expression and gene copy numbers of KIT, PDGFRA, and VEGFR2 in 41 MB and 11 PNET samples by immunohistochemistry (IHC) and chromogenic in situ hybridization (CISH). KIT and PDGFRA expression was detected in both MBs and PNETs, whereas VEGFR2 expression was weak in these tumors. KIT, PDGFRA, and VEGFR2 amplifications were all present in 4% of MBs/PNETs, and KIT amplification was associated with concurrent PDGFRA and VEGFR2 amplifications (P ≤ 0.001). Most strikingly, increased gene copy number of PDGFRA was associated with poor overall survival (P = 0.027). We suggest that coamplification of PDGFRA or VEGFR2 with KIT may be clinically useful novel molecular markers in MBs and PNETs.


Amplification KIT PDGFRA VEGFR2 Medulloblastoma 



This work has been supported by the Academy of Finland, Instrumentarium Foundation, K. Albin Johansson Foundation, Finnish Cultural Foundation, The Paulo Foundation, Orion and Farmos Research Foundation, Jalmari and Rauha Ahokas Foundation, Maud Kuistila Foundation, the Biomedicum Helsinki Foundation, the Cancer Society of Finland, and the Medical Research Fund of Tampere University Hospital. We greatly thank Gynel Arifdshan for skilful technical assistance and James Thompson for language editing.


  1. 1.
    Andrae J, Molander C, Smits A, Funa K, Nistér M (2002) Platelet-derived growth factor-B and -C and active alpha-receptors in medulloblastoma cells. Biochem Biophys Res Commun 296:604–611CrossRefPubMedGoogle Scholar
  2. 2.
    Bayani J, Zielenska M, Marrano P et al (2000) Molecular cytogenetic analysis of medulloblastomas and supratentorial primitive neuroectodermal tumors by using conventional banding, comparative genomic hybridization, and spectral karyotyping. J Neurosurg 93:437–448CrossRefPubMedGoogle Scholar
  3. 3.
    Behesti H, Marino S (2008) Cerebellar granule cells: Insights into proliferation, differentiation, and role in medulloblastoma pathogenesis. Int J Biochem Cell Biol 41:435–445CrossRefPubMedGoogle Scholar
  4. 4.
    Burnett ME, White EC, Sih S, von Haken MS, Cogen PH (1997) Chromosome arm 17p deletion analysis reveals molecular genetic heterogeneity in supratentorial and infratentorial primitive neuroectodermal tumors of the central nervous system. Cancer Genet Cytogenet 97:25–31CrossRefPubMedGoogle Scholar
  5. 5.
    Bühren J, Christoph AH, Buslei R, Albrecht S, Wiestler OD, Pietsch T (2000) Expression of the neurotrophin receptor p75NTR in medulloblastomas is correlated with distinct histological and clinical features: evidence for a medulloblastoma subtype derived from the external granule cell layer. J Neuropathol Exp Neurol 59:229–240PubMedGoogle Scholar
  6. 6.
    Chilton-MacNeill S, Ho M, Hawkins C, Gassas A, Zielenska M, Baruchel S (2004) C-kit expression and mutational analysis in medulloblastoma. Pediatr Dev Pathol 7:493–498CrossRefPubMedGoogle Scholar
  7. 7.
    Chopra A, Brown KM, Rood BR, Packer RJ, MacDonald TJ (2003) The use of gene expression analysis to gain insights into signaling mechanisms of metastatic medulloblastoma. Pediatr Neurosurg 39:68–74CrossRefPubMedGoogle Scholar
  8. 8.
    Crawford JR, MacDonald TJ, Packer RJ (2007) Medulloblastoma in childhood: new biological advances. Lancet Neurol 6:1073–1085CrossRefPubMedGoogle Scholar
  9. 9.
    Ellison DW, Onilude OE, Lindsey JC et al (2005) Beta-Catenin status predicts a favorable outcome in childhood medulloblastoma: the United Kingdom Children’s Cancer Study Group Brain Tumour Committee. J Clin Oncol 23:7951–7957CrossRefPubMedGoogle Scholar
  10. 10.
    Fan X, Eberhart CG (2008) Medulloblastoma stem cells. J Clin Oncol 26:2821–2827CrossRefPubMedGoogle Scholar
  11. 11.
    Gilbertson RJ, Clifford SC (2003) PDGFRB is overexpressed in metastatic medulloblastoma. Nat Genet 35:197–198CrossRefPubMedGoogle Scholar
  12. 12.
    Gilbertson RJ, Langdon JA, Hollander A et al (2006) Mutational analysis of PDGFR-RAS/MAPK pathway activation in childhood medulloblastoma. Eur J Cancer 42:646–649CrossRefPubMedGoogle Scholar
  13. 13.
    Huber H, Eggert A, Janss AJ et al (2001) Angiogenic profile of childhood primitive neuroectodermal brain tumors/medulloblastomas. Eur J Cancer 37:2064–2072CrossRefPubMedGoogle Scholar
  14. 14.
    Inda MM, Perot C, Guillaud-Bataille M et al (2005) Genetic heterogeneity in supratentorial and infratentorial primitive neuroectodermal tumours of the central nervous system. Histopathology 47:631–637CrossRefPubMedGoogle Scholar
  15. 15.
    Jay V, Squire J, Zielenska M, Gerrie B, Humphreys R (1995) Molecular and cytogenetic analysis of a cerebellar primitive neuroectodermal tumor with prominent neuronal differentiation: detection of MYCN amplification by differential polymerase chain reaction and Southern blot analysis. Pediatr Pathol Lab Med 15:733–744PubMedGoogle Scholar
  16. 16.
    Joensuu H, Puputti M, Sihto H, Tynninen O, Nupponen NN (2005) Amplification of genes encoding KIT, PDGFRalpha and VEGFR2 receptor tyrosine kinases is frequent in glioblastoma multiforme. J Pathol 207:224–231CrossRefPubMedGoogle Scholar
  17. 17.
    Kagawa N, Maruno M, Suzuki T et al (2006) Detection of genetic and chromosomal aberrations in medulloblastomas and primitive neuroectodermal tumors with DNA microarrays. Brain Tumor Pathol 23:41–47CrossRefPubMedGoogle Scholar
  18. 18.
    Kara IO, Gonlusen G, Sahin B, Ergin M, Erdogan S (2005) A general aspect on soft-tissue sarcoma and c-kit expression in primitive neuroectodermal tumor and Ewing’s sarcoma. Is there any role in disease process? Saudi Med J 26:1190–1196PubMedGoogle Scholar
  19. 19.
    Katsetos CD, Burger PC (1994) Medulloblastoma. Semin Diagn Pathol 11:85–97PubMedGoogle Scholar
  20. 20.
    Koch A, Waha A, Tonn JC et al (2001) Somatic mutations of WNT/wingless signaling pathway components in primitive neuroectodermal tumors. Int J Cancer 93:445–449CrossRefPubMedGoogle Scholar
  21. 21.
    Kool M, Koster J, Bunt J et al (2008) Integrated genomics identifies five medulloblastoma subtypes with distinct genetic profiles, pathway signatures and clinicopathological features. PLoS ONE 3(8):e3088CrossRefPubMedGoogle Scholar
  22. 22.
    Korja M, Finne J, Salmi TT et al (2005) Chromogenic in situ hybridization-detected hotspot MYCN amplification associates with Ki-67 expression and inversely with nestin expression in neuroblastomas. Mod Pathol 18:1599–1605PubMedGoogle Scholar
  23. 23.
    Korshunov A, Benner A, Remke M, Lichter P, von Deimling A, Pfister S (2008) Accumulation of genomic aberrations during clinical progression of medulloblastoma. Acta Neuropathol 116:383–390CrossRefPubMedGoogle Scholar
  24. 24.
    Louis DN, Ohgaki H, Wiestler OD et al (2007) WHO Classification of tumours of the central nervous system. Acta Neuropathol 114:97–109CrossRefPubMedGoogle Scholar
  25. 25.
    MacDonald TJ, Brown KM, LaFleur B et al (2001) Expression profiling of medulloblastoma: PDGFRA and the RAS/MAPK pathway as therapeutic targets for metastatic disease. Nat Genet 29:143–152CrossRefPubMedGoogle Scholar
  26. 26.
    Marino S, Vooijs M, van Der Gulden H, Jonkers J, Berns A (2000) Induction of medulloblastomas in p53-null mutant mice by somatic inactivation of Rb in the external granular layer cells of the cerebellum. Genes Dev 14:994–1004PubMedGoogle Scholar
  27. 27.
    McCabe MG, Ichimura K, Liu L (2006) High-resolution array-based comparative genomic hybridization of medulloblastomas and supratentorial primitive neuroectodermal tumors. J Neuropathol Exp Neurol 65:549–561CrossRefPubMedGoogle Scholar
  28. 28.
    Michiels EM, Weiss MM, Hoovers JM et al (2002) Genetic alterations in childhood medulloblastoma analyzed by comparative genomic hybridization. J Pediatr Hematol Oncol 24:205–210CrossRefPubMedGoogle Scholar
  29. 29.
    Mueller RE, Parkes RK, Andrulis I, O’Malley FP (2004) Amplification of the TOP2A gene does not predict high levels of topoisomerase II alpha protein in human breast tumor samples. Genes Chromosom Cancer 39:288–297CrossRefPubMedGoogle Scholar
  30. 30.
    Pollack IF (1994) Brain tumors in children. N Engl J Med 331:1500–1507CrossRefPubMedGoogle Scholar
  31. 31.
    Pomeroy SL, Tamayo P, Gaasenbeek M et al (2002) Prediction of central nervous system embryonal tumor outcome based on gene expression. Nature 415:436–442CrossRefPubMedGoogle Scholar
  32. 32.
    Puputti M, Tynninen O, Sihto H et al (2006) Amplification of KIT, PDGFRA, VEGFR2, and EGFR in gliomas. Mol Cancer Res 4:927–934CrossRefPubMedGoogle Scholar
  33. 33.
    Rao G, Pedone CA, Del Valle L, Reiss K, Holland EC, Fults DW (2004) Sonic hedgehog and insulin-like growth factor signaling synergize to induce medulloblastoma formation from nestin-expressing neural progenitors in mice. Oncogene 23:6156–6162CrossRefPubMedGoogle Scholar
  34. 34.
    Russo C, Pellarin M, Tingby O et al (1999) Comparative genomic hybridization in patients with supratentorial and infratentorial primitive neuroectodermal tumors. Cancer 86:331–339CrossRefPubMedGoogle Scholar
  35. 35.
    Shakhova O, Leung C, van Montfort E, Berns A, Marino S (2006) Lack of Rb and p53 delays cerebellar development and predisposes to large cell anaplastic medulloblastoma through amplification of N-Myc and Ptch2. Cancer Res 66:5190–5200CrossRefPubMedGoogle Scholar
  36. 36.
    Slongo ML, Molena B, Brunati AM et al (2007) Functional VEGF and VEGF receptors are expressed in human medulloblastomas. Neuro Oncol 9:384–392CrossRefPubMedGoogle Scholar
  37. 37.
    Smits A, van Grieken D, Hartman M, Lendahl U, Funa K, Nistér M (1996) Coexpression of platelet-derived growth factor alpha and beta receptors on medulloblastomas and other primitive neuroectodermal tumors is consistent with an immature stem cell and neuronal derivation. Lab Invest 74:188–198PubMedGoogle Scholar
  38. 38.
    Stuart AG, Pearson AD, Emslie J et al (1993) Cytogenetic abnormalities in a disseminated medulloblastoma. Med Pediatr Oncol 21:295–298CrossRefPubMedGoogle Scholar
  39. 39.
    Tanner M, Gancberg D, Di Leo A et al (2000) Chromogenic in situ hybridization: a practical alternative for fluorescence in situ hybridization to detect HER-2/neu oncogene amplification in archival breast cancer samples. Am J Pathol 157:1467–1472PubMedGoogle Scholar
  40. 40.
    Yokota N, Nishizawa S, Ohta S et al (2002) Role of Wnt pathway in medulloblastoma oncogenesis. Int J Cancer 101:198–201CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2009

Authors and Affiliations

  • Tea Blom
    • 1
  • Annariikka Roselli
    • 1
  • Valtteri Häyry
    • 2
  • Olli Tynninen
    • 3
  • Kirmo Wartiovaara
    • 2
  • Miikka Korja
    • 4
  • Kristiina Nordfors
    • 5
  • Hannu Haapasalo
    • 5
  • Nina N. Nupponen
    • 1
  1. 1.Molecular Cancer Biology Program, Biomedicum HelsinkiUniversity of HelsinkiUniversity of HelsinkiFinland
  2. 2.Medical Biochemistry and Developmental Biology, Institute of BiomedicineUniversity of HelsinkiUniversity of HelsinkiFinland
  3. 3.Department of PathologyHelsinki University Central HospitalUniversity of HelsinkiFinland
  4. 4.Department of Medical Biochemistry and Molecular BiologyUniversity of TurkuTurkuFinland
  5. 5.Department of PathologyTampere University HospitalTampereFinland

Personalised recommendations