Survival benefit of Boron neutron capture therapy for recurrent malignant gliomas
- 331 Downloads
- 45 Citations
Abstract
We have applied boron neutron capture therapy (BNCT) to malignant brain tumors. Here we evaluated the survival benefit of BNCT for recurrent malignant glioma (MG). Since 2002, we have treated 22 cases of recurrent MG with BNCT. Survival time was analyzed with special reference to recursive partitioning analysis (RPA) classification, by Carson et al. (J Clin Oncol 25:2601–2606, 2007). Median survival times (MSTs) after BNCT for all patients and for glioblastoma as on-study histology at recurrence was 10.8 months (n = 22; 95% CI, 7.3–12.8 months) and 9.6 months (n = 19; 95% CI, 6.9–11.4 months), respectively. In our study, MST for the high-risk RPA classes was 9.1 months (n = 11; 95% CI, 4.4–11.0 months). By contrast, the original journal data showed that the MST of the same RPA classes was 4.4 months (n = 129; 95% CI, 3.6–5.4 months). BNCT showed a survival benefit for recurrent MG, especially in the high-risk group.
Keywords
BNCT BPA–PET GBM MG RPANotes
Acknowledgments
This work was partly supported by Grants-in-Aid for Scientific Research (B) (16390422 and 19390385) from the Japanese Ministry of Education, Science and Culture, by a Grant-in-Aid for Scientific Research from the Ministry of Health, Labor and Welfare of Japan to S–I.M. (P·I., Hideki Matsui) and by the Regional Science Promotion Program of the Japan Science and Technology Corporation, as well as by the “Second-term Comprehensive 10-Year Strategy for Cancer Control” of the Ministry of Health, Labor, and Welfare of Japan to S–I.M. This work was also supported in part by the Takeda Science Foundation for Osaka Medical College, by a Grant-in-Aid for Cancer Research from the Ministry of Education, Culture, Sports, Science, and Technology of Japan (12217065) to K. O., and by Grants-in-Aid for Scientific Research by young researchers (B) (18791030) from the Japanese Ministry of Education, Science, and Culture to S. K. The top two authors contributed equally in this study as primary co-investigators.
Supplementary material
References
- 1.Kawabata S, Miyatake S, Kajimoto Y et al (2003) The early successful treatment of glioblastoma patients with modified boron neutron capture therapy: report of two cases. J Neurooncol 65:159–165. doi: 10.1023/B:NEON.0000003751.67562.8e PubMedCrossRefGoogle Scholar
- 2.Miyatake S, Kawabata S, Kajimoto Y et al (2005) Modified boron neutron capture therapy for malignant gliomas performed using epithermal neutron and two boron compounds with different accumulation mechanisms: an efficacy study based on findings on neuroimages. J Neurosurg 103:1000–1009PubMedCrossRefGoogle Scholar
- 3.Miyatake S, Tamura Y, Kawabata S et al (2007) Boron neutron capture therapy for malignant tumors related to meningiomas. Neurosurgery 61:82–90. doi: 10.1227/01.neu.0000279727.90650.24 Discussion 90–81PubMedCrossRefGoogle Scholar
- 4.Tamura Y, Miyatake S, Nonoguchi N et al (2006) Boron neutron capture therapy for recurrent malignant meningioma: case report. J Neurosurg 105:898–903. doi: 10.3171/jns.2006.105.6.898 PubMedCrossRefGoogle Scholar
- 5.Coderre JA, Chanana AD, Joel DD et al (1998) Biodistribution of boronophenylalanine in patients with glioblastoma multiforme: boron concentration correlates with tumor cellularity. Radiat Res 149:163–170. doi: 10.2307/3579926 PubMedCrossRefGoogle Scholar
- 6.Huncharek M, Muscat J (1998) Treatment of recurrent high grade astrocytoma; results of a systematic review of 1, 415 patients. Anticancer Res 18:1303–1311PubMedGoogle Scholar
- 7.Kawabata S, Miyatake S, Kuroiwa T et al Boron neutron capture therapy for newly diagnosed glioblastoma. J Rad Res (in press)Google Scholar
- 8.Carson KA, Grossman SA, Fisher JD et al (2007) Prognostic factors for survival in adult patients with recurrent glioma enrolled onto the new approaches to brain tumor therapy CNS consortium phase I and II clinical trials. J Clin Oncol 25:2601–2606. doi: 10.1200/JCO.2006.08.1661 PubMedCrossRefGoogle Scholar
- 9.Imahori Y, Ueda S, Ohmori Y et al (1998) Positron emission tomography-based boron neutron capture therapy using boronophenylalanine for high-grade gliomas: part II. Clin Cancer Res 4:1833–1841PubMedGoogle Scholar
- 10.Imahori Y, Ueda S, Ohmori Y et al (1998) Positron emission tomography-based boron neutron capture therapy using boronophenylalanine for high-grade gliomas: part I. Clin Cancer Res 4:1825–1832PubMedGoogle Scholar
- 11.Sakurai Y, Ono K, Miyatake S et al (2006) Improvement effect on the depth-dose distribution by CSF drainage and air infusion of a tumour-removed cavity in boron neutron capture therapy for malignant brain tumours. Phys Med Biol 51:1173–1183. doi: 10.1088/0031-9155/51/5/009 PubMedCrossRefGoogle Scholar
- 12.Miyashita M, Miyatake S, Imahori Y et al (2008) Evaluation of fluoride-labeled boronophenylalanine-PET imaging for the study of radiation effects in patients with glioblastomas. J Neurooncol 89:239–246. doi: 10.1007/s11060-008-9621-6 PubMedCrossRefGoogle Scholar
- 13.Glantz MJ, Burger PC, Friedman AH et al (1994) Treatment of radiation-induced nervous system injury with heparin and warfarin. Neurology 44:2020–2027PubMedGoogle Scholar
- 14.Henriksson R, Capala J, Michanek A et al (2008) Boron neutron capture therapy (BNCT) for glioblastoma multiforme: a phase II study evaluating a prolonged high-dose of boronophenylalanine (BPA). Radiother Oncol 88:183–191PubMedCrossRefGoogle Scholar
- 15.Wong ET, Hess KR, Gleason MJ et al (1999) Outcomes and prognostic factors in recurrent glioma patients enrolled onto phase II clinical trials. J Clin Oncol 17:2572–2578PubMedGoogle Scholar
- 16.Pellettieri L, H-Stenstam B, Rezaei A et al (2008) An investigation of boron neutron capture therapy for recurrent glioblastoma multiforme. Acta Neurol Scand 117:191–197. doi: 10.1111/j.1600-0404.2007.00924.x PubMedCrossRefGoogle Scholar
- 17.Joensuu H, Kankaanranta L, Seppala T et al (2003) Boron neutron capture therapy of brain tumors: clinical trials at the Finnish facility using boronophenylalanine. J Neurooncol 62:123–134PubMedGoogle Scholar
- 18.Hegi ME, Diserens AC, Gorlia T et al (2005) MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 352:997–1003. doi: 10.1056/NEJMoa043331 PubMedCrossRefGoogle Scholar
- 19.Brada M, Hoang-Xuan K, Rampling R et al (2001) Multicenter phase II trial of temozolomide in patients with glioblastoma multiforme at first relapse. Ann Oncol 12:259–266. doi: 10.1023/A:1008382516636 PubMedCrossRefGoogle Scholar
- 20.Shrieve DC, Alexander E III, Wen PY et al (1995) Comparison of stereotactic radiosurgery and brachytherapy in the treatment of recurrent glioblastoma multiforme. Neurosurgery 36:275–282. doi: 10.1097/00006123-199502000-00006 Discussion 282–274PubMedCrossRefGoogle Scholar
- 21.Hudes RS, Corn BW, Werner-Wasik M et al (1999) A phase I dose escalation study of hypofractionated stereotactic radiotherapy as salvage therapy for persistent or recurrent malignant glioma. Int J Radiat Oncol Biol Phys 43:293–298. doi: 10.1016/S0360-3016(98)00416-7 PubMedGoogle Scholar
- 22.Veninga T, Langendijk HA, Slotman BJ et al (2001) Reirradiation of primary brain tumours: survival, clinical response and prognostic factors. Radiother Oncol 59:127–137. doi: 10.1016/S0167-8140(01)00299-7 PubMedCrossRefGoogle Scholar
- 23.Stupp R, Mason WP, van den Bent MJ et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996. doi: 10.1056/NEJMoa043330 PubMedCrossRefGoogle Scholar