Journal of Neuro-Oncology

, 91:199

Survival benefit of Boron neutron capture therapy for recurrent malignant gliomas

  • Shin-Ichi Miyatake
  • Shinji Kawabata
  • Kunio Yokoyama
  • Toshihiko Kuroiwa
  • Hiroyuki Michiue
  • Yoshinori Sakurai
  • Hiroaki Kumada
  • Minoru Suzuki
  • Akira Maruhashi
  • Mitsunori Kirihata
  • Koji Ono
Clinical study - patient Study

Abstract

We have applied boron neutron capture therapy (BNCT) to malignant brain tumors. Here we evaluated the survival benefit of BNCT for recurrent malignant glioma (MG). Since 2002, we have treated 22 cases of recurrent MG with BNCT. Survival time was analyzed with special reference to recursive partitioning analysis (RPA) classification, by Carson et al. (J Clin Oncol 25:2601–2606, 2007). Median survival times (MSTs) after BNCT for all patients and for glioblastoma as on-study histology at recurrence was 10.8 months (n = 22; 95% CI, 7.3–12.8 months) and 9.6 months (n = 19; 95% CI, 6.9–11.4 months), respectively. In our study, MST for the high-risk RPA classes was 9.1 months (n = 11; 95% CI, 4.4–11.0 months). By contrast, the original journal data showed that the MST of the same RPA classes was 4.4 months (n = 129; 95% CI, 3.6–5.4 months). BNCT showed a survival benefit for recurrent MG, especially in the high-risk group.

Keywords

BNCT BPA–PET GBM MG RPA 

Supplementary material

11060_2008_9699_MOESM1_ESM.doc (34 kb)
MOESM1 (DOC 33 kb)

References

  1. 1.
    Kawabata S, Miyatake S, Kajimoto Y et al (2003) The early successful treatment of glioblastoma patients with modified boron neutron capture therapy: report of two cases. J Neurooncol 65:159–165. doi:10.1023/B:NEON.0000003751.67562.8e PubMedCrossRefGoogle Scholar
  2. 2.
    Miyatake S, Kawabata S, Kajimoto Y et al (2005) Modified boron neutron capture therapy for malignant gliomas performed using epithermal neutron and two boron compounds with different accumulation mechanisms: an efficacy study based on findings on neuroimages. J Neurosurg 103:1000–1009PubMedCrossRefGoogle Scholar
  3. 3.
    Miyatake S, Tamura Y, Kawabata S et al (2007) Boron neutron capture therapy for malignant tumors related to meningiomas. Neurosurgery 61:82–90. doi:10.1227/01.neu.0000279727.90650.24 Discussion 90–81PubMedCrossRefGoogle Scholar
  4. 4.
    Tamura Y, Miyatake S, Nonoguchi N et al (2006) Boron neutron capture therapy for recurrent malignant meningioma: case report. J Neurosurg 105:898–903. doi:10.3171/jns.2006.105.6.898 PubMedCrossRefGoogle Scholar
  5. 5.
    Coderre JA, Chanana AD, Joel DD et al (1998) Biodistribution of boronophenylalanine in patients with glioblastoma multiforme: boron concentration correlates with tumor cellularity. Radiat Res 149:163–170. doi:10.2307/3579926 PubMedCrossRefGoogle Scholar
  6. 6.
    Huncharek M, Muscat J (1998) Treatment of recurrent high grade astrocytoma; results of a systematic review of 1, 415 patients. Anticancer Res 18:1303–1311PubMedGoogle Scholar
  7. 7.
    Kawabata S, Miyatake S, Kuroiwa T et al Boron neutron capture therapy for newly diagnosed glioblastoma. J Rad Res (in press)Google Scholar
  8. 8.
    Carson KA, Grossman SA, Fisher JD et al (2007) Prognostic factors for survival in adult patients with recurrent glioma enrolled onto the new approaches to brain tumor therapy CNS consortium phase I and II clinical trials. J Clin Oncol 25:2601–2606. doi:10.1200/JCO.2006.08.1661 PubMedCrossRefGoogle Scholar
  9. 9.
    Imahori Y, Ueda S, Ohmori Y et al (1998) Positron emission tomography-based boron neutron capture therapy using boronophenylalanine for high-grade gliomas: part II. Clin Cancer Res 4:1833–1841PubMedGoogle Scholar
  10. 10.
    Imahori Y, Ueda S, Ohmori Y et al (1998) Positron emission tomography-based boron neutron capture therapy using boronophenylalanine for high-grade gliomas: part I. Clin Cancer Res 4:1825–1832PubMedGoogle Scholar
  11. 11.
    Sakurai Y, Ono K, Miyatake S et al (2006) Improvement effect on the depth-dose distribution by CSF drainage and air infusion of a tumour-removed cavity in boron neutron capture therapy for malignant brain tumours. Phys Med Biol 51:1173–1183. doi:10.1088/0031-9155/51/5/009 PubMedCrossRefGoogle Scholar
  12. 12.
    Miyashita M, Miyatake S, Imahori Y et al (2008) Evaluation of fluoride-labeled boronophenylalanine-PET imaging for the study of radiation effects in patients with glioblastomas. J Neurooncol 89:239–246. doi:10.1007/s11060-008-9621-6 PubMedCrossRefGoogle Scholar
  13. 13.
    Glantz MJ, Burger PC, Friedman AH et al (1994) Treatment of radiation-induced nervous system injury with heparin and warfarin. Neurology 44:2020–2027PubMedGoogle Scholar
  14. 14.
    Henriksson R, Capala J, Michanek A et al (2008) Boron neutron capture therapy (BNCT) for glioblastoma multiforme: a phase II study evaluating a prolonged high-dose of boronophenylalanine (BPA). Radiother Oncol 88:183–191PubMedCrossRefGoogle Scholar
  15. 15.
    Wong ET, Hess KR, Gleason MJ et al (1999) Outcomes and prognostic factors in recurrent glioma patients enrolled onto phase II clinical trials. J Clin Oncol 17:2572–2578PubMedGoogle Scholar
  16. 16.
    Pellettieri L, H-Stenstam B, Rezaei A et al (2008) An investigation of boron neutron capture therapy for recurrent glioblastoma multiforme. Acta Neurol Scand 117:191–197. doi:10.1111/j.1600-0404.2007.00924.x PubMedCrossRefGoogle Scholar
  17. 17.
    Joensuu H, Kankaanranta L, Seppala T et al (2003) Boron neutron capture therapy of brain tumors: clinical trials at the Finnish facility using boronophenylalanine. J Neurooncol 62:123–134PubMedGoogle Scholar
  18. 18.
    Hegi ME, Diserens AC, Gorlia T et al (2005) MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 352:997–1003. doi:10.1056/NEJMoa043331 PubMedCrossRefGoogle Scholar
  19. 19.
    Brada M, Hoang-Xuan K, Rampling R et al (2001) Multicenter phase II trial of temozolomide in patients with glioblastoma multiforme at first relapse. Ann Oncol 12:259–266. doi:10.1023/A:1008382516636 PubMedCrossRefGoogle Scholar
  20. 20.
    Shrieve DC, Alexander E III, Wen PY et al (1995) Comparison of stereotactic radiosurgery and brachytherapy in the treatment of recurrent glioblastoma multiforme. Neurosurgery 36:275–282. doi:10.1097/00006123-199502000-00006 Discussion 282–274PubMedCrossRefGoogle Scholar
  21. 21.
    Hudes RS, Corn BW, Werner-Wasik M et al (1999) A phase I dose escalation study of hypofractionated stereotactic radiotherapy as salvage therapy for persistent or recurrent malignant glioma. Int J Radiat Oncol Biol Phys 43:293–298. doi:10.1016/S0360-3016(98)00416-7 PubMedGoogle Scholar
  22. 22.
    Veninga T, Langendijk HA, Slotman BJ et al (2001) Reirradiation of primary brain tumours: survival, clinical response and prognostic factors. Radiother Oncol 59:127–137. doi:10.1016/S0167-8140(01)00299-7 PubMedCrossRefGoogle Scholar
  23. 23.
    Stupp R, Mason WP, van den Bent MJ et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996. doi:10.1056/NEJMoa043330 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  • Shin-Ichi Miyatake
    • 1
    • 2
  • Shinji Kawabata
    • 1
  • Kunio Yokoyama
    • 1
  • Toshihiko Kuroiwa
    • 1
  • Hiroyuki Michiue
    • 3
  • Yoshinori Sakurai
    • 4
  • Hiroaki Kumada
    • 5
  • Minoru Suzuki
    • 4
  • Akira Maruhashi
    • 4
  • Mitsunori Kirihata
    • 6
  • Koji Ono
    • 4
  1. 1.Department of NeurosurgeryOsaka Medical CollegeTakatsukiJapan
  2. 2.Cancer Intelligence Care System, Inc.TokyoJapan
  3. 3.Department of NeurosurgeryOkayama UniversityOkayamaJapan
  4. 4.Particle Radiation Oncology Research Center, Research Reactor Institute, Kyoto UniversityKumatoriJapan
  5. 5.Department of Research Reactor and Tandem Accelerator, Nuclear Science Institute, Japan Atomic Energy AgencyTokaiJapan
  6. 6.Department of AgricultureOsaka Prefectural UniversitySakaiJapan

Personalised recommendations