Advertisement

Journal of Neuro-Oncology

, 91:127 | Cite as

In vivo bioluminescence imaging in an experimental mouse model for dendritic cell based immunotherapy against malignant glioma

  • W. Maes
  • C. Deroose
  • V. Reumers
  • O. Krylyshkina
  • R. Gijsbers
  • V. Baekelandt
  • J. Ceuppens
  • Z. Debyser
  • S. W. Van Gool
Laboratory Investigation - Human/animal Tissue

Abstract

The value of bioluminescence imaging (BLI) for experimental cancer models has become firmly established. We applied BLI to the GL261 glioma model in the context of dendritic cell (DC) immunotherapy. Initial validation revealed robust linear correlations between in vivo, ex vivo and in vitro luciferase activity measurements. Ex vivo BLI demonstrated midline crossing and leakage of tumor cells. Orthotopically challenged mice followed with BLI showed an initial adaptation phase, after which imaging data correlated linearly with stereologically determined tumor dimensions. Transition from healthy to moribund state corresponded with an increasing in vivo flux but the onset of neurological deficit was clearly delayed compared to the onset of in vivo flux increase. BLI was implemented in prophylactic immunotherapy and imaging data were prognostic for therapy outcome. Three distinct response patterns were detected. Our data underscore the feasibility of in vivo BLI in an experimental immunotherapeutic setting in the GL261 glioma model.

Keywords

Malignant glioma Immunotherapy Dendritic cells In vivo bioluminescence Stereomicroscopy Validation 

Notes

Acknowledgements

W.M. is supported by the Olivia Hendrickx Research Fund. V.R. is funded by a Ph.D. grant from the Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT Vlaanderen). R.G. is a postdoctoral fellow of the Fund for Scientific Research—Flanders. S.VG. is a Senior Clinical Investigator of the Fund for Scientific Research—Flanders. We thank Vigdis Vanbeselare for excellent assistance with the animal experiments in this study. This work was supported by the Olivia Hendrickx Research Fund (www.olivia.be) and MoSAIC Excellence funding.

References

  1. 1.
    Massoud TF, Gambhir SS (2003) Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev 17(5):545–580. doi: 10.1101/gad.1047403 PubMedCrossRefGoogle Scholar
  2. 2.
    Rehemtulla A, Stegman LD, Cardozo SJ, Gupta S, Hall DE, Contag CH et al (2000) Rapid and quantitative assessment of cancer treatment response using in vivo bioluminescence imaging. Neoplasia 2(6):491–495. doi: 10.1038/sj.neo.7900121 PubMedCrossRefGoogle Scholar
  3. 3.
    Shah K, Tang Y, Breakefield X, Weissleder R (2003) Real-time imaging of TRAIL-induced apoptosis of glioma tumors in vivo. Oncogene 22(44):6865–6872. doi: 10.1038/sj.onc.1206748 PubMedCrossRefGoogle Scholar
  4. 4.
    Soling A, Theiss C, Jungmichel S, Rainov NG (2004) A dual function fusion protein of Herpes simplex virus type 1 thymidine kinase and firefly luciferase for noninvasive in vivo imaging of gene therapy in malignant glioma. Genet Vaccines Ther 2(1):7. doi: 10.1186/1479-0556-2-7 PubMedCrossRefGoogle Scholar
  5. 5.
    Weissleder R (2002) Scaling down imaging: molecular mapping of cancer in mice. Nat Rev Cancer 2(1):11–18. doi: 10.1038/nrc701 PubMedCrossRefGoogle Scholar
  6. 6.
    Zhang Y, Bressler JP, Neal J, Lal B, Bhang HE, Laterra J et al (2007) ABCG2/BCRP expression modulates D-Luciferin based bioluminescence imaging. Cancer Res 67(19):9389–9397. doi: 10.1158/0008-5472.CAN-07-0944 PubMedCrossRefGoogle Scholar
  7. 7.
    Contag CH, Spilman SD, Contag PR, Oshiro M, Eames B, Dennery P et al (1997) Visualizing gene expression in living mammals using a bioluminescent reporter. Photochem Photobiol 66(4):523–531. doi: 10.1111/j.1751-1097.1997.tb03184.x PubMedCrossRefGoogle Scholar
  8. 8.
    Contag PR, Olomu IN, Stevenson DK, Contag CH (1998) Bioluminescent indicators in living mammals. Nat Med 4(2):245–247. doi: 10.1038/nm0298-245 PubMedCrossRefGoogle Scholar
  9. 9.
    Contag CH, Jenkins D, Contag PR, Negrin RS (2000) Use of reporter genes for optical measurements of neoplastic disease in vivo. Neoplasia 2(1–2):41–52. doi: 10.1038/sj.neo.7900079 PubMedCrossRefGoogle Scholar
  10. 10.
    Cowey S, Szafran AA, Kappes J, Zinn KR, Siegal GP, Desmond RA et al (2007) Breast cancer metastasis to bone: evaluation of bioluminescent imaging and microSPECT/CT for detecting bone metastasis in immunodeficient mice. Clin Exp Metastasis 24(5):389–401. doi: 10.1007/s10585-007-9076-8 PubMedCrossRefGoogle Scholar
  11. 11.
    Dickson PV, Hamner B, Ng CY, Hall MM, Zhou J, Hargrove PW et al (2007) In vivo bioluminescence imaging for early detection and monitoring of disease progression in a murine model of neuroblastoma. J Pediatr Surg 42(7):1172–1179. doi: 10.1016/j.jpedsurg.2007.02.027 PubMedCrossRefGoogle Scholar
  12. 12.
    Edinger M, Cao YA, Hornig YS, Jenkins DE, Verneris MR, Bachmann MH et al (2002) Advancing animal models of neoplasia through in vivo bioluminescence imaging. Eur J Cancer 38(16):2128–2136. doi: 10.1016/S0959-8049(02)00410-0 PubMedCrossRefGoogle Scholar
  13. 13.
    Inoue Y, Izawa K, Tojo A, Nomura Y, Sekine R, Oyaizu N et al (2007) Monitoring of disease progression by bioluminescence imaging and magnetic resonance imaging in an animal model of hematologic malignancy. Exp Hematol 35(3):407–415. doi: 10.1016/j.exphem.2006.11.006 PubMedCrossRefGoogle Scholar
  14. 14.
    Jurczok A, Fornara P, Soling A (2008) Bioluminescence imaging to monitor bladder cancer cell adhesion in vivo: a new approach to optimize a syngeneic, orthotopic, murine bladder cancer model. BJU Int 101(1):120–124PubMedGoogle Scholar
  15. 15.
    Liao CP, Zhong C, Saribekyan G, Bading J, Park R, Conti PS et al (2007) Mouse models of prostate adenocarcinoma with the capacity to monitor spontaneous carcinogenesis by bioluminescence or fluorescence. Cancer Res 67(15):7525–7533. doi: 10.1158/0008-5472.CAN-07-0668 PubMedCrossRefGoogle Scholar
  16. 16.
    Murray LJ, Abrams TJ, Long KR, Ngai TJ, Olson LM, Hong W et al (2003) SU11248 inhibits tumor growth and CSF-1R-dependent osteolysis in an experimental breast cancer bone metastasis model. Clin Exp Metastasis 20(8):757–766. doi: 10.1023/B:CLIN.0000006873.65590.68 PubMedCrossRefGoogle Scholar
  17. 17.
    Notting IC, Buijs JT, Que I, Mintardjo RE, van der HG, Karperien M et al (2005) Whole-body bioluminescent imaging of human uveal melanoma in a new mouse model of local tumor growth and metastasis. Invest Ophthalmol Vis Sci 46(5):1581–1587. doi: 10.1167/iovs.04-0245 PubMedCrossRefGoogle Scholar
  18. 18.
    Ragel BT, Elam IL, Gillespie DL, Flynn JR, Kelly DA, Mabey D et al (2008) A novel model of intracranial meningioma in mice using luciferase-expressing meningioma cells. J Neurosurg 108(2):304–310. doi: 10.3171/JNS/2008/108/2/0304 PubMedCrossRefGoogle Scholar
  19. 19.
    Sarraf-Yazdi S, Mi J, Dewhirst MW, Clary BM (2004) Use of in vivo bioluminescence imaging to predict hepatic tumor burden in mice. J Surg Res 120(2):249–255. doi: 10.1016/j.jss.2004.03.013 PubMedCrossRefGoogle Scholar
  20. 20.
    Tannehill-Gregg SH, Levine AL, Nadella MV, Iguchi H, Rosol TJ (2006) The effect of zoledronic acid and osteoprotegerin on growth of human lung cancer in the tibias of nude mice. Clin Exp Metastasis 23(1):19–31. doi: 10.1007/s10585-006-9008-z PubMedCrossRefGoogle Scholar
  21. 21.
    Wang Y, Sun Z, Peng J, Zhan L (2007) Bioluminescent imaging of hepatocellular carcinoma in live mice. Biotechnol Lett 29(11):1665–1670. doi: 10.1007/s10529-007-9452-0 PubMedCrossRefGoogle Scholar
  22. 22.
    Grauer OM, Nierkens S, Bennink E, Toonen LW, Boon L, Wesseling P et al (2007) CD4+FoxP3+regulatory T cells gradually accumulate in gliomas during tumor growth and efficiently suppress antiglioma immune responses in vivo. Int J Cancer 121(1):95–105. doi: 10.1002/ijc.22607 PubMedCrossRefGoogle Scholar
  23. 23.
    Newcomb EW, Demaria S, Lukyanov Y, Shao Y, Schnee T, Kawashima N et al (2006) The combination of ionizing radiation and peripheral vaccination produces long-term survival of mice bearing established invasive GL261 gliomas. Clin Cancer Res 12(15):4730–4737. doi: 10.1158/1078-0432.CCR-06-0593 PubMedCrossRefGoogle Scholar
  24. 24.
    Spagnolo A, Glick RP, Lin H, Cohen EP, Feinstein DL, Lichtor T (2007) Prolonged survival of mice with established intracerebral glioma receiving combined treatment with peroxisome proliferator-activated receptor-gamma thiazolidinedione agonists and interleukin-2-secreting syngeneic/allogeneic fibroblasts. J Neurosurg 106(2):299–305. doi: 10.3171/jns.2007.106.2.299 PubMedCrossRefGoogle Scholar
  25. 25.
    Szatmari T, Lumniczky K, Desaknai S, Trajcevski S, Hidvegi EJ, Hamada H et al (2006) Detailed characterization of the mouse glioma 261 tumor model for experimental glioblastoma therapy. Cancer Sci 97(6):546–553. doi: 10.1111/j.1349-7006.2006.00208.x PubMedCrossRefGoogle Scholar
  26. 26.
    Contag CH, Ross BD (2002) It’s not just about anatomy: in vivo bioluminescence imaging as an eyepiece into biology. J Magn Reson Imaging 16(4):378–387. doi: 10.1002/jmri.10178 PubMedCrossRefGoogle Scholar
  27. 27.
    Deroose CM, De A, Loening AM, Chow PL, Ray P, Chatziioannou AF et al (2007) Multimodality imaging of tumor xenografts and metastases in mice with combined small-animal PET, small-animal CT, and bioluminescence imaging. J Nucl Med 48(2):295–303PubMedGoogle Scholar
  28. 28.
    Hollingshead MG, Bonomi CA, Borgel SD, Carter JP, Shoemaker R, Melillo G et al (2004) A potential role for imaging technology in anticancer efficacy evaluations. Eur J Cancer 40(6):890–898. doi: 10.1016/j.ejca.2003.12.018 PubMedCrossRefGoogle Scholar
  29. 29.
    Paroo Z, Bollinger RA, Braasch DA, Richer E, Corey DR, Antich PP et al (2004) Validating bioluminescence imaging as a high-throughput, quantitative modality for assessing tumor burden. Mol Imaging 3(2):117–124. doi: 10.1162/1535350041464865 PubMedCrossRefGoogle Scholar
  30. 30.
    Soling A, Rainov NG (2003) Bioluminescence imaging in vivo—application to cancer research. Expert Opin Biol Ther 3(7):1163–1172PubMedGoogle Scholar
  31. 31.
    Szentirmai O, Baker CH, Lin N, Szucs S, Takahashi M, Kiryu S et al (2006) Noninvasive bioluminescence imaging of luciferase expressing intracranial U87 xenografts: correlation with magnetic resonance imaging determined tumor volume and longitudinal use in assessing tumor growth and antiangiogenic treatment effect. Neurosurgery 58(2):365–372. doi: 10.1227/01.NEU.0000195114.24819.4F PubMedCrossRefGoogle Scholar
  32. 32.
    Hsu AR, Cai W, Veeravagu A, Mohamedali KA, Chen K, Kim S et al (2007) Multimodality molecular imaging of glioblastoma growth inhibition with vasculature-targeting fusion toxin VEGF121/rGel. J Nucl Med 48(3):445–454PubMedGoogle Scholar
  33. 33.
    Kemper EM, Leenders W, Kusters B, Lyons S, Buckle T, Heerschap A et al (2006) Development of luciferase tagged brain tumour models in mice for chemotherapy intervention studies. Eur J Cancer 42(18):3294–3303. doi: 10.1016/j.ejca.2006.07.013 PubMedCrossRefGoogle Scholar
  34. 34.
    Ohlfest JR, Demorest ZL, Motooka Y, Vengco I, Oh S, Chen E et al (2005) Combinatorial antiangiogenic gene therapy by nonviral gene transfer using the sleeping beauty transposon causes tumor regression and improves survival in mice bearing intracranial human glioblastoma. Mol Ther 12(5):778–788. doi: 10.1016/j.ymthe.2005.07.689 PubMedCrossRefGoogle Scholar
  35. 35.
    Deroose CM, Reumers V, Gijsbers R, Bormans G, Debyser Z, Mortelmans L et al (2006) Noninvasive monitoring of long-term lentiviral vector-mediated gene expression in rodent brain with bioluminescence imaging. Mol Ther 14(3):423–431. doi: 10.1016/j.ymthe.2006.05.007 PubMedCrossRefGoogle Scholar
  36. 36.
    Mustafa M, Diener P, Sun JB, Link H, Olsson T (1993) Immunopharmacologic modulation of experimental allergic encephalomyelitis: low-dose cyclosporin-A treatment causes disease relapse and increased systemic T and B cell-mediated myelin-directed autoimmunity. Scand J Immunol 38:499–507. doi: 10.1111/j.1365-3083.1993.tb03232.x PubMedCrossRefGoogle Scholar
  37. 37.
    Saito R, Mizuno M, Nakahara N, Tsuno T, Kumabe T, Yoshimoto T et al (2004) Vaccination with tumor cell lysate-pulsed dendritic cells augments the effect of IFN-beta gene therapy for malignant glioma in an experimental mouse intracranial glioma. Int J Cancer 111:777–782. doi: 10.1002/ijc.20331 PubMedCrossRefGoogle Scholar
  38. 38.
    Schmitz C, Hof PR (2005) Design-based stereology in neuroscience. Neuroscience 130(4):813–831. doi: 10.1016/j.neuroscience.2004.08.050 PubMedCrossRefGoogle Scholar
  39. 39.
    Inaba K, Inaba M, Romani N, Aya H, Deguchi M, Ikehara S et al (1992) Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor. J Exp Med 176(6):1693–1702. doi: 10.1084/jem.176.6.1693 PubMedCrossRefGoogle Scholar
  40. 40.
    Lutz MB, Kukutsch N, Ogilvie ALJ, Rossner S, Koch F, Romani N et al (1999) An advanced culture method for generating large quantities of highly pure dendritic cells from mouse bone marrow. J Immunol Methods 223:77–92. doi: 10.1016/S0022-1759(98)00204-X PubMedCrossRefGoogle Scholar
  41. 41.
    Van Meirvenne S, Straetmen L, Heirman C, Dullaers M, De Greef C, Van Tendeloo VF et al (2002) Efficient genetic modification of murine dendritic cells by electroporation with mRNA. Cancer Gene Ther 9:787. doi: 10.1038/sj.cgt.7700499 PubMedCrossRefGoogle Scholar
  42. 42.
    Jenkins DE, Oei Y, Hornig YS, Yu SF, Dusich J, Purchio T et al (2003) Bioluminescent imaging (BLI) to improve and refine traditional murine models of tumor growth and metastasis. Clin Exp Metastasis 20(8):733–744. doi: 10.1023/B:CLIN.0000006815.49932.98 PubMedCrossRefGoogle Scholar
  43. 43.
    Craft N, Bruhn KW, Nguyen BD, Prins R, Liau LM, Collisson EA et al (2005) Bioluminescent imaging of melanoma in live mice. J Invest Dermatol 125(1):159–165. doi: 10.1111/j.0022-202X.2005.23759.x PubMedCrossRefGoogle Scholar
  44. 44.
    Fomchenko EI, Holland EC (2006) Mouse models of brain tumors and their applications in preclinical trials. Clin Cancer Res 12(18):5288–5297. doi: 10.1158/1078-0432.CCR-06-0438 PubMedCrossRefGoogle Scholar
  45. 45.
    Blouw B, Song H, Tihan T, Bosze J, Ferrara N, Gerber HP et al (2003) The hypoxic response of tumors is dependent on their microenvironment. Cancer Cell 4(2):133–146. doi: 10.1016/S1535-6108(03)00194-6 PubMedCrossRefGoogle Scholar
  46. 46.
    Ciesielski MJ, Apfel L, Barone TA, Castro CA, Weiss TC, Fenstermaker RA (2006) Antitumor effects of a xenogeneic survivin bone marrow derived dendritic cell vaccine against murine GL261 gliomas. Cancer Immunol Immunother 55(12):1491–1503. doi: 10.1007/s00262-006-0138-6 PubMedCrossRefGoogle Scholar
  47. 47.
    Eyupoglu IY, Hahnen E, Heckel A, Siebzehnrubl FA, Buslei R, Fahlbusch R et al (2005) Malignant glioma-induced neuronal cell death in an organotypic glioma invasion model. Technical note. J Neurosurg 102(4):738–744PubMedCrossRefGoogle Scholar
  48. 48.
    O I, Blaszczyk-Thurin M, Shen CT, Ertl HC (2003) A DNA vaccine expressing tyrosinase-related protein-2 induces T-cell-mediated protection against mouse glioblastoma. Cancer Gene Ther 10(9):678–688. doi: 10.1038/sj.cgt.7700620 Google Scholar
  49. 49.
    Manley GT, Binder DK, Papadopoulos MC, Verkman AS (2004) New insights into water transport and edema in the central nervous system from phenotype analysis of aquaporin-4 null mice. Neuroscience 129(4):983–991. doi: 10.1016/j.neuroscience.2004.06.088 PubMedCrossRefGoogle Scholar
  50. 50.
    El Andaloussi A, Han Y, Lesniak MS (2006) Prolongation of survival following depletion of CD4+CD25+regulatory T cells in mice with experimental brain tumors. J Neurosurg 105(3):430–437. doi: 10.3171/jns.2006.105.3.430 PubMedCrossRefGoogle Scholar
  51. 51.
    El Andaloussi A, Sonabend AM, Han Y, Lesniak MS (2006) Stimulation of TLR9 with CpG ODN enhances apoptosis of glioma and prolongs the survival of mice with experimental brain tumors. Glia 54(6):526–535. doi: 10.1002/glia.20401 PubMedCrossRefGoogle Scholar
  52. 52.
    Fecci PE, Sweeney AE, Grossi PM, Nair SK, Learn CA, Mitchell DA et al (2006) Systemic anti-CD25 monoclonal antibody administration safely enhances immunity in murine glioma without eliminating regulatory T cells. Clin Cancer Res 12(14 Pt 1):4294–4305. doi: 10.1158/1078-0432.CCR-06-0053 PubMedCrossRefGoogle Scholar
  53. 53.
    Ni HT, Spellman SR, Jean WC, Hall WA, Low WC (2001) Immunization with dendritic cells pulsed with tumor extract increases survival of mice bearing intracranial gliomas. J Neurooncol 51(1):1–9. doi: 10.1023/A:1006452726391 PubMedCrossRefGoogle Scholar
  54. 54.
    Pellegatta S, Poliani PL, Corno D, Grisoli M, Cusimano M, Ubiali F et al (2006) Dendritic cells pulsed with glioma lysates induce immunity against syngeneic intracranial gliomas and increase survival of tumor-bearing mice. Neurol Res 28(5):527–531. doi: 10.1179/016164106X116809 PubMedCrossRefGoogle Scholar
  55. 55.
    Scheel B, Aulwurm S, Probst J, Stitz L, Hoerr I, Rammensee HG et al (2006) Therapeutic anti-tumor immunity triggered by injections of immunostimulating single-stranded RNA. Eur J Immunol 36(10):2807–2816. doi: 10.1002/eji.200635910 PubMedCrossRefGoogle Scholar
  56. 56.
    Tsugawa T, Kuwashima N, Sato H, Fellows-Mayle WK, Dusak JE, Okada K et al (2004) Sequential delivery of interferon-alpha gene and DCs to intracranial gliomas promotes an effective antitumor response. Gene Ther 11(21):1551–1558. doi: 10.1038/sj.gt.3302300 PubMedCrossRefGoogle Scholar
  57. 57.
    Yamanaka R, Xanthopoulos KG (2005) Induction of antigen-specific immune responses against malignant brain tumors by intramuscular injection of sindbis DNA encoding gp100 and IL-18. DNA Cell Biol 24(5):317–324. doi: 10.1089/dna.2005.24.317 PubMedCrossRefGoogle Scholar
  58. 58.
    Prins RM, Shu CJ, Radu CG, Vo DD, Khan-Farooqi H, Soto H, et al (2008) Anti-tumor activity and trafficking of self, tumor-specific T cells against tumors located in the brain. Cancer Immunol Immunother; Epub ahead of printGoogle Scholar
  59. 59.
    Hakamata Y, Murakami T, Kobayashi E (2006) “Firefly rats” as an organ/cellular source for long-term in vivo bioluminescent imaging. Transplantation 81(8):1179–1184. doi: 10.1097/01.tp.0000203137.06587.4a PubMedCrossRefGoogle Scholar
  60. 60.
    Shah K, Hingtgen S, Kasmieh R, Figueiredo JL, Garcia-Garcia E, Martinez-Serrano A et al (2008) Bimodal viral vectors and in vivo imaging reveal the fate of human neural stem cells in experimental glioma model. J Neurosci 28(17):4406–4413. doi: 10.1523/JNEUROSCI.0296-08.2008 PubMedCrossRefGoogle Scholar
  61. 61.
    Hsu AR, Hou LC, Veeravagu A, Greve JM, Vogel H, Tse V et al (2006) In vivo near-infrared fluorescence imaging of integrin alphavbeta3 in an orthotopic glioblastoma model. Mol Imaging Biol 8(6):315–323. doi: 10.1007/s11307-006-0059-y PubMedCrossRefGoogle Scholar
  62. 62.
    Breart B, Lemaitre F, Celli S, Bousso P (2008) Two-photon imaging of intratumoral CD8+T cell cytotoxic activity during adoptive T cell therapy in mice. J Clin Invest 118(4):1390–1397. doi: 10.1172/JCI34388 PubMedCrossRefGoogle Scholar
  63. 63.
    Greschus S, Kiessling F, Lichy MP, Moll J, Mueller MM, Savai R et al (2005) Potential applications of flat-panel volumetric CT in morphologic and functional small animal imaging. Neoplasia 7(8):730–740. doi: 10.1593/neo.05160 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  • W. Maes
    • 1
  • C. Deroose
    • 2
    • 3
    • 4
  • V. Reumers
    • 2
    • 3
    • 5
  • O. Krylyshkina
    • 2
    • 5
  • R. Gijsbers
    • 2
    • 3
  • V. Baekelandt
    • 3
    • 5
  • J. Ceuppens
    • 1
  • Z. Debyser
    • 2
    • 3
  • S. W. Van Gool
    • 1
    • 6
    • 7
  1. 1.Laboratory of Experimental Immunology, Department of Experimental MedicineKatholieke Universiteit LeuvenLeuvenBelgium
  2. 2.Laboratory for Molecular Virology and Gene Therapy, Department of Molecular and Cellular MedicineKatholieke Universiteit LeuvenLeuvenBelgium
  3. 3.Molecular Small Animal Imaging Center (MoSAIC)Katholieke Universiteit LeuvenLeuvenBelgium
  4. 4.Division of Nuclear MedicineUniversity Hospital Leuven, Katholieke Universiteit LeuvenLeuvenBelgium
  5. 5.Laboratory for Neurobiology and Gene Therapy, Department of Molecular and Cellular MedicineKatholieke Universiteit LeuvenLeuvenBelgium
  6. 6.Pediatric hemato-oncology, Department of Child and WomanKatholieke Universiteit LeuvenLeuvenBelgium
  7. 7.University Hospital GasthuisbergLeuvenBelgium

Personalised recommendations